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a b s t r a c t

The purpose of this study is to examine in more detail under what conditions would spatial averaging
over some prescribed region be sufficient to reproduce the response statistics arising from a spatially
variable field. The spatially variable undrained shear strength is first simulated by a random field, and the
actual response of a spatially variable clay in three problems (soil column, retaining wall, shallow
foundation) is simulated using the random finite element method. This actual response is then compared
to the spatial average response (the response of a homogeneous clay whose undrained shear strength is
equal to certain spatial average). It is observed that the actual response can be well approximated by the
spatial average response only for situations where the critical slip curve is constrained. This constraint is
the most significant for the retaining wall and the least significant for the soil column.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Soil-structure interaction occurs over a finite volume of soil
(influence zone). For a spatially variable soil mass, it is natural to
examine if it can be simplified as an equivalent homogeneous soil
mass. It is possible that the equivalency, if it exists, depends on the
nature of the spatial variability and the type of the response (e.g.
capacity or deformation). The simplest equivalency is to convert
the spatially variable soil parameter into a homogeneous spatial
average [1,2]. Fenton and Griffiths [3] studied the settlement of a
footing on a three-dimensional (3D) spatially variable soil mass
with this practical objective in mind. Their results showed that the
effective elastic modulus can be well represented by the geometric
average within an influence zone under the footing. Honjo and
Otake [4] studied the capacity of a footing on a two-dimensional
(2D) spatially variable soil mass. Their results showed that the
effective shear strength can be well represented by the spatial
average within an influence zone of different size. In structural
mechanics, a similar concept of homogenization has been pro-
posed [5–7].

In an attempt to clarify the emergent behavior of critical slip
surfaces in a spatially variable soil mass, Ching and Phoon [8]
found that the shear strength of a laboratory test specimen can
NOT be effectively represented by spatial average over any pre-
scribed area or curve. Instead, they found that the shear strength

can be well represented only by the average over the actual slip
curve. Note that the critical difference here is that the actual slip
curve is not a prescribed curve, but an emergent curve that de-
pends on the random field realization. Its trajectory changes from
realization to realization, because it is the solution of a boundary
value problem over a spatially variable domain. The change can be
significant, for e.g., the slip curve can vary in location over the
entire height of the rectangular specimen studied by [8], or the
change can be limited because the curve is constrained to pass
through the toe of a retaining wall studied by [9]. Even for the
retaining wall problem where the slip curve is constrained, [9]
found that the active lateral force generally can NOT be well re-
presented by considering the spatial average over any prescribed
area or line.

Fenton and Griffiths [3] and Honjo and Otake [4] focused on the
global response of a footing (settlement, capacity), whereas [8,9]
focused at a more local level on the strength mobilized along an
emergent critical slip curve. It is difficult to explain why these
mechanical responses, which appear similar, would produce dia-
metrically opposite conclusions. There is a practical motivation to
examine the limitations of spatial averaging, because it is ob-
viously easier to carry out reliability-based design using a random
variable (spatial average) than a random field. The purpose of this
study is to examine in more detail under what conditions would
spatial averaging over some prescribed region be sufficient to re-
produce the response statistics arising from a spatially variable
field. Clearly, the studies by [3,4] have demonstrated numerically
that converting the property field of spatially variable medium
into a homogeneous spatial average over a prescribed region
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works in some cases.
The property field is restricted to the undrained shear strength

(su) in this paper. The method adopted by this paper is straight-
forward. Two sets of finite element method (FEM) analyses will be
conducted. The first set considers a spatially variable clay whose su
is simulated by a random field. The outcome of this first set of
random finite element method (RFEM) is called the “actual re-
sponse”. It is the reference or actual response of the spatially
variable clay. The same su random field is then averaged over a
prescribed area or line of interest to obtain the su spatial average.
The second set of FEM then considers a homogeneous clay whose
su is equal to the spatial average. The outcome of this second set of
FEM will be referred to as the “spatial average response”. This
response is then compared to the actual response simulated by the
RFEM. Although two types of averages (arithmetic and geometric
averages) have been studied, only the results for the geometric
average will be presented. The conclusions for the arithmetic
average are qualitatively similar. The comparison will be made on
the following two levels: Level I compares the statistics of the two
sets of responses, whereas Level II compares the two sets of re-
sponses on the 1:1 line. More specifically, the responses produced
by two distinct FEM analyses are two distinct random variables.
Level I checks if these random variables are “equal” in the prob-
ability distribution sense. Level II checks if these random variables
are “equal” in their numerical values. Another way of viewing
the distinction between Level I and Level II is that a bivariate
distribution is needed to define two random variables (“actual
response” and “spatial average response”). Level I only compares
the similarity in the marginal distribution. Level II compares both
the distribution and the correlation between these variables. To
replace one random variable by another random variable for re-
liability analysis, there must be strong correlation as well. Two
identically distributed independent variables cannot be used in-
terchangeably for reliability analysis. Three problems are adopted
to examine actual responses under different boundary conditions:
(a) a soil column; (b) a retaining wall; and (c) a shallow
foundation.

2. Random field and its simulation

In this study, the only random soil property is the soil shear
strength (τf). The shear strength τf(x,z) at a point in the soil mass is
simulated by a random field, where x and z are respectively the
horizontal and vertical coordinates. The friction angle is taken to
be 0° for simplicity, i.e., τf(x,z)¼su(x,z), where su is the undrained
shear strength. The random shear strength τf(x,z) is simulated as a
stationary lognormal random field with inherent mean¼μ and
inherent coefficient of variation¼COV. To define the correlation
structure in τf(x,z) between two locations with horizontal dis-
tance¼Δx and vertical distance¼Δz, the single exponential auto-
correlation model is considered [1,2]:

( )ρ δ δ(Δ Δ ) = − Δ − Δ ( )x z x z, exp 2 / 2 / 1x z

where δx and δz are the horizontal and vertical scales of fluctua-
tion (SOFs), respectively. The Fourier series method (FSM) [10,11]
is adopted to simulate stationary normal random fields (point
process). A 2D stationary lognormal random field τf(x,z) over a
domain of size Lx� Lz can be simulated by taking the exponential
of a 2D stationary normal random field with mean¼λ¼ ln[μ
/(1þCOV2)0.5] and standard deviation¼ξ¼[ln(1þCOV2)]0.5:

( )∑ ∑
( )

τ λ π π( ) = + + +
=−∞

∞

=−∞

∞⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟

2
x z a ib

i m x
L

i n z
L

, exp Re exp
2 2

f
m n x z

mn mn

where Re[.] denotes the real part of the enclosed complex number;

amn and bmn are independent zero-mean normal random variables
with variance smn
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where qx¼Lx/δx and qz¼Lz/δz. Note that the auto-correlation in Eq.
(1) is applied to the ln[τf(x,z)] field (a normal field). Besides si-
mulating the point process of a normal random field, the FSM is
also capable of directly simulating the spatial average of the nor-
mal random field over a prescribed rectangular region (cell) in 2D
[10]. To simulate a “cell average” over each element, the cell
average for the underlying normal random field ln[τf(x,z)] is first
simulated and then the exponential of this average is used. By
doing this, it is evident that the cell average for τf(x,z) is actually a
geometric average, not an arithmetic average. In the case that the
sizes of the cell are smaller than the SOFs, a geometric average is
roughly the same as an arithmetic average. All averages refer to
geometric averages from hereon, unless specifically specified.

3. Random finite element models

This study compares the actual response with the spatial
average response for three physical problems: (a) a soil column;
(b) a retaining wall; and (c) a shallow foundation. The RFEM
models for these three problems are described below.

3.1. Soil column

The RFEM model for the soil column is a rectangular area of
size Lx� Lz¼48 m�12.8 m (Fig. 1a). The bottom boundary is
supported on rollers, and the lower-leftmost node is a hinge, to
prevent rigid body translation in the x direction. The unit weight of
the soil is set to 0 to ensure uniform vertical stress. Young’s
modulus E is deterministic and equal to 400 MN/m2, the Poisson
ratio is 0.3, and the friction angle ϕ¼0°. The undrained shear
strength τf(x,z) is simulated as a stationary lognormal random field
using the FSM. The mean value μ¼50 kN/m2 and COV¼0.3. The τf
for each element is taken to be the geometric average of the τf(x,z)
field over that element. This is equivalent to adopting the geo-
metric average over each element. In this RFEM, two types of
stress states are considered: (1) scenario C – compression test; and
(2) scenario S – shear test. An increasing axial compression (sce-
nario C) or shear stress (scenario S) is applied until the RFEM fails
to converge. For scenario C, the axial stress versus strain curve
(Fig. 2a) is plotted, and the yield axial stress applied on the top
boundary is identified. The yield axial stress (sy) is identified by
shifting the initial linear portion to the right (with a strain offset of
0.0001) and reading the intersect between this shifted line and the
stress–strain curve (Fig. 2a). This value of sy, denoted by sf

m, is
interpreted as the actual response for the RFEM. For scenario S, the
shear stress versus strain curve (Fig. 2b) is plotted, and the yield
shear stress applied on the four boundaries (τy) is identified. The
same strain offset criterion is adopted to identify τy (Fig. 2b). This
τy, denoted by τfm, is the actual response for the RFEM. This RFEM
has been analyzed in [8]. This strain offset is very small, indicating
a very large rigidity index, because the modulus is deliberately set
to a large value (400 MN/m2) for numerical efficiency.

For the spatial average response, the spatial averaging over the
entire rectangular area of size Lx� Lz, shown in Fig. 1b, is con-
sidered. The geometric average of the τf values for all elements is
first simulated, and a homogeneous FEM is simulated to obtain the
spatial average response, denoted by sf

RA for scenario C and by τfRA

for scenario S (RA means ‘rectangular average’).
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