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a b s t r a c t

This study carried out investigations on the bifurcation characteristics of a Duffing–Van der Pol (DVDP)
oscillator subjected to white noise excitations. Dynamical (or D-) bifurcations are characterised by dra-
matic changes in the dynamical behaviour leading to topological changes in the phase portrait. An ad-
ditional mode of bifurcation - phenomenological (or P-) bifurcation, is observed in stochastically excited
systems when the stationary joint probability density function of the state variables undergo topological
changes in the probability space. While D-bifurcation analysis is quantified in terms of the sign changes
in the largest Lyapunov exponent, P-bifurcation analysis is usually qualitative and through visual in-
spection. In this study, a new quantitative measure for P-bifurcations based on the Shannon entropy is
proposed. A comparison of the parameter regimes of the noisy DVDP oscillator identified by the three
bifurcation methodologies have been presented.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Duffing–Van der Pol (DVDP) oscillator is an archetypical
single degree of freedom mathematical model for a range of dy-
namical systems, such as, aircraft wings at high angles of attack,
thin panels in supersonic flows, single mode lasers with saturable
absorbers and synthetic gene oscillators. The mathematical model
for the DVDP oscillator is characterised by both linear and
nonlinear restoring and dissipative terms and exhibits phenom-
enologically rich behaviour at various parameter regimes. The
general form of the equations of motion are given by [1,2]
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where α ∈c, are respectively the linear stiffness and damping
parameters, β{ } ∈=i i 0

2 are the parameters related to the nonlinear
stiffness and damping terms and W(t) is the excitation. Typically,
the dynamical behaviour of the DVDP oscillator is characterised by
defining the parameter space in terms of the linear damping and
stiffness terms. As these parameters are varied, the DVDP exhibits
dramatic changes in its behaviour – from stable fixed points, limit
cycles and even chaotic motion. Identification of the boundaries of
the different behaviour regimes is important to gain an under-
standing of the dynamics associated with the system. This has led

to studies devoted to the bifurcation analysis of such systems.
Bifurcations are characterised as dramatic changes in the dy-

namical behaviour of systems leading to topological changes in the
phase space. The birth or destruction of attractors in the phase
space and/or changes in the characteristics of attractors and their
basins of attraction are typical examples of bifurcations. For ex-
ample, a stable fixed node (an attractor) for certain parameter
regimes can lead to stable limit cycle oscillations (also an attractor)
as one of the parameters is changed. Typically, topological changes
are quantified through invariant measures, such as the largest
Lyapunov exponent (LLE), that capture the topological character-
istics associated with the vector field. LLE captures the long time
behaviour of two adjoining trajectories in the flow field and has
been widely used in the literature to identify bifurcations.

The presence of noise in the dynamical system can lead to
significant changes in its dynamical behaviour. Noise can alter the
boundaries of the regimes of different attractors, the character-
istics of their flow field and their basins of attraction, especially in
multistable systems [3,4]. Investigations on the influence of noise
on the dynamical behaviour and bifurcation characteristics have
received significant attention in the literature [5–9]. However,
questions related to defining stochastic bifurcations, their inter-
pretation and tools for identifying the different dynamical regime
boundaries are yet to be answered satisfactorily. Most studies in
the literature define stochastic bifurcations through topological
changes associated with the vector field – known as the dynamical
or D-bifurcations, or through the qualitative topological changes
associated with the probabilistic structure of the joint probability
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density functions (j-pdf). The latter is termed as phenomenological
or P-bifurcations.

D-bifurcation analysis is based on the sudden sign change of
the LLE [6–8,10,11]. The LLE, qualitatively measures the stability
characteristics of a dynamical system, allows assessment of the
sensitivity of the solution of a dynamical system with respect to
the initial conditions, and is used for measuring the fractal di-
mension of strange attractors. However, the difficulties in D-bi-
furcation analysis lie in developing an appropriate definition for
the LLE for noisy signals and devising an efficient and accurate
algorithm for its computation. Algorithms for computing the LLE
for noisy signals have been developed in [12,13]. The sign change
of the LLE has been effectively employed as an important measure
in defining the dynamical bifurcation point for a random dyna-
mical system in the probability one sense [7,10,11]. This is mainly
attributed to the fact that the LLE characterizes the asymptotic
behaviour of nonlinear dynamical systems by measuring the mean
exponential growth or shrinking of small perturbations to a
nominal trajectory. Therefore the sample or almost sure stability of
a stationary solution of a random dynamical problem depends on
the LLE. However, as has been shown in [14], different algorithms
could lead to different bifurcation points in the parameter space.

P-bifurcation analysis is based on the qualitative changes in the
probabilistic structure of the stationary j-pdf of the state variables
at different parameter regimes. The propagation of the j-pdf and
the qualitative changes can be completely characterized by the
solution of the associated Fokker–Planck (FP) equation [15]. The
j-pdf of the state variables essentially is a measure of the time
spent by a typical solution in a volume element of the phase space.
Hence, P-bifurcation analysis is based on statistical information
[10] and does not explicitly take into account the dynamics of the
system. Thus, P-bifurcation analyses are perceived to be based on
static concepts. Secondly, the j-pdf is generated by a one point
motion and hence cannot be related to dynamic stability. More
importantly, unlike dynamical bifurcations, changes in the topo-
logical structure of the j-pdf are not abrupt and dramatic, but
occur gradually as the bifurcation parameter is changed. The
boundaries of the different regimes associated with P-bifurcations
are therefore not sharp.

A major source of concern in the use of D- or P-bifurcation de-
finitions is the lack of relationship between these two approaches,
often leading to identification of different stability boundaries.
Studies have been shown in the literature where there have been no
topological changes in the structure of the stationary pdf of the
response over parameter ranges where a sign change of the LLE has
been observed [16]. Similarly, it has been shown in [17] that the
stationary pdf of the response of a system undergoes a topological
change in its structure without any corresponding sign change of
the LLE. These examples clearly show the lack of relationship be-
tween the invariant measures - j-pdf and the LLE. Questions on
investigating alternative suitable invariant measures for predicting
stochastic bifurcation have been raised in [7]. It was suggested in [1]
that a stochastic attractor may be taken as invariant and their
shape, size and their stability characteristics can be considered as
essential properties whose radical changes could indicate stochastic
bifurcations. This approach was used in [18] for bifurcation analysis
of a stochastically excited Ueda system. Recently, qualitative chan-
ges that occur in the pdf of the amplitude of the random response
has been used as indicators of stochastic bifurcation in [2,19]. The
authors have used the method of stochastic averaging to obtain
approximations for the pdf of the amplitude of the response pro-
cesses. Stochastic averaging has been used to study a variety of low
damping problems under the assumptions of quasi-harmonic re-
gime [20]. However, stochastic averaging cannot capture the effects
of the nonlinear stiffness terms as their effects get averaged out and
do not enter the formulation.

The focus of this study is to investigate the bifurcation char-
acteristics of a DVDP oscillator, in the bistable regime, subjected to
white noise excitations. First, a stochastic bifurcation analysis is
carried out using the existing concepts of D- and P- bifurcations,
available in the literature. Subsequently, the bifurcations are ex-
amined using an invariant measure based on the Shannon entropy.
Discussions on the interpretation of the dynamical behaviour of
the noisy DVDP oscillator and the bifurcation characteristics are
also presented. This study is expected to provide insights into the
behaviour of aeroelastic systems in turbulent flows [21].

2. Stability of the deterministic DVDP oscillator

First, the stability characteristics of the deterministic DVDP
oscillator is examined. Considering ( ) =W t 0, the vector field of the
corresponding deterministic system is expressed as
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, whose stability can be examined from the eigenvalues of

the Jacobian matrix for the corresponding linearized system, given
by
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where αβ β α β β= + −A c / /1 0
2

2 0
2. For α< <c 0, 0 and α< −c 42 ,

γ ∈1 with  γ( ) < 01 . Hence, the fixed point at the origin is stable.
For <c 0, as α changes from negative to positive, a pitchfork bi-
furcation occurs with the origin becoming unstable accompanied
by the birth of two stable fixed points at α β( ± )/ , 00 . The DVDP
oscillator exhibits bistable behaviour in the parameter regime

β β− ( ) < <c/ 8 01 2 and has two attractors – a period one attractor
and a quasi-periodic attractor [2]. These attractors can be seen in
the phase plane diagram shown in Fig. 1a. Here, the numerical
values that have been considered are = −c 0.11, β = 0.50 , β = 11 ,
β = 12 , α = − 1. The corresponding Poincare map is shown in
Fig. 1b; the region denoted by c1 is the basin of attraction for C1
while c2 denotes the basin for the attractor C2.

A bifurcation analysis is next carried out on the basis of the
computation of the LLE, with respect to the parameter α. Using the
principle of Oseledec's multiplicative theorem [22], the Lyapunov
exponent (LE) is mathematically defined as

λ = ∥ ( )∥
∥ ( )∥ ( )→∞ t

tu
u

lim
1

log
0

,
4t

where { ≥ }tu : 0t are the solution trajectories of the linear differ-
ential equations obtained when Eq. (2) is linearised about a re-
ference solution ( ( ) ( ))X t X t,1 2 , for ≥t 0 and ∥·∥ is the Euclidean
vector norm. The LLE is the maximum of the computed LEs. As the
linear differential equation of ut is coupled with Eq. (2), its direct
solution is computationally intensive. This has led to the devel-
opment of several numerical methods. In the Wolf's algorithm, the
Lyapunov vectors are approximated by the set of vector obtained
using the Gram–Schmidt re-orthonormalization algorithm [12,23].
An alternative algorithm proposed by Wedig [13] uses Khasmins-
kii's unit projection theorem to compute the LLE. A negative LLE
indicates stable system and a bifurcation is deemed to occur as the
LLE changes sign resulting in the system becoming unstable. Fig. 2
shows the variation of the Lyapunov exponents (LE), computed
using Wolf's algorithm, with α as the control parameter, for three
different values of c. For = −c 0.075 and −0.1, the LLE is observed
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