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a b s t r a c t

In conjunction with the formulation of random functions, a family of renewed spectral representation
schemes is proposed. The selected random function serves as a random constraint correlating the ran-
dom variables included in the spectral representation schemes. The objective stochastic process can thus
be completely represented by a dimension-reduced spectral model with just few elementary random
variables, through defining the high-dimensional random variables of conventional spectral re-
presentation schemes (usually hundreds of random variables) into the low-dimensional orthogonal
random functions. To highlight the advantages of this scheme, orthogonal trigonometric functions with
one and two random variables are constructed. Representative-point set of the dimension-reduced
spectral model is derived by employing the probability-space partition techniques. The complete set with
assigned probabilities of points gains a low-number-sample stochastic process. For illustrative purposes,
the stochastic modeling of seismic acceleration processes is proceeded, of which the stationary and non-
stationary cases are investigated. It is shown that the spectral acceleration of simulated processes
matches well with the target spectrum. Stochastic seismic response analysis, moreover, and reliability
assessment of a framed structure with Bouc-Wen behaviors are carried out using the probability density
evolution method. Numerical results reveal the applicability and efficiency of the proposed simulation
technique.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is well understood in engineering community that the
rational description and modeling of random excitations un-
derlies the analysis and reliability assessment of engineering
structures. The systematic development on this study began
with the contribution of Housner in 1947 [11], who modelled
the seismic acceleration as a pulse-structured stochastic pro-
cess. While the accurate stochastic analysis of structures, in
practices, involves the logical modeling of engineering excita-
tions. The practical demand highly prompts the enthusiasm of
researchers on the simulation of stochastic processes. There has
arisen tens of simulation techniques so far among which,
nevertheless, the scheme of spectral representation is widely
used due to its rigorous mathematical formulation and easier-
to-be-implemented algorithm.

The concept of spectral representation is original from the pio-
neered work of Rice [29], Goto and Toki [14], Borgman [1] upon the
simulation of a one-dimensional stochastic process using harmonic
superposition method. It is Shinozuka who completely proposed
the general principles of stochastic process simulation employing
spectral representation schemes [31,34]. In the following 40 years, a
lot of researchers were devoted into this field. With these consistent
efforts, the spectral representation scheme has finally been ac-
cepted by engineering communities and been used in practical
applications. As regards the critical advances of the spectral re-
presentation scheme, Shinozuka and Deodatis first derived the
theoretical formulation for the one-dimensional stochastic pro-
cesses with single variable [32], and later extended the theoretical
formulation to the high-dimensional Gaussian random fields [33].
Deodatis then investigated the multi-variant stationary process
featuring the ergodic behaviors [8]. Simultaneously, he suggested
the spectral representation-based simulation algorithm to generate
sample functions of a non-stationary, multi-variate stochastic pro-
cess with evolutionary power spectra [9]. Spanos and Zeldin ad-
dressed the characteristics of sample functions of spectral

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/probengmech

Probabilistic Engineering Mechanics

http://dx.doi.org/10.1016/j.probengmech.2016.04.004
0266-8920/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author at: State Key Laboratory of Disaster Reduction in Civil
Engineering, Tongji University, Shanghai 200092, PR China.

E-mail address: pengyongbo@tongji.edu.cn (Y. Peng).

Probabilistic Engineering Mechanics 45 (2016) 115–126

www.sciencedirect.com/science/journal/02668920
www.elsevier.com/locate/probengmech
http://dx.doi.org/10.1016/j.probengmech.2016.04.004
http://dx.doi.org/10.1016/j.probengmech.2016.04.004
http://dx.doi.org/10.1016/j.probengmech.2016.04.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2016.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2016.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2016.04.004&domain=pdf
mailto:pengyongbo@tongji.edu.cn
http://dx.doi.org/10.1016/j.probengmech.2016.04.004


representation scheme, of which the computational efficiency and
applicability were included as well [35]. Liang et al. developed a
spectral representation scheme upon the non-stationary seismic
ground motions directly using the representation theory of time-
varying spectrum of non-stationary stochastic process, where the
sample processes were yielded through constructing a cosine-
function series [23]. Cacciola and Deodatis proposed a spectral-re-
presentation-based methodology for deriving fully non-stationary
and spectrum-compatible ground motion vector processes [2].

The Karhunen–Loeve expansion is also used to represent both
stationary and non-stationary stochastic processes. Ghanem and
Spanos dealt with the Karhunen–Loeve expansion in the context of
stochastic finite elements [13]. Huang et al. analyzed the Karhu-
nen–Loeve expansion as a simulation tool for both stationary and
non-stationary Gaussian processes focusing on convergence and
accuracy [16]. Phoon et al. simulated non-Gaussian processes with
a given marginal distribution and with a given covariance function
[25]. They later improved the non-Gaussian simulation technique
by prescribing a fractile covariance function [26]. Grigoriu eval-
uated the Karhunen–Loève expansion and the spectral re-
presentation coinciding for weakly stationary processes [15]. It is
noted that the Karhunen–Loeve expansion requires the solution of
an eigenvalue problem, which has not the advantage over the
spectral representation scheme merely with an FFT for simulating
stationary processes. While the Karhunen–Loeve expansion does
not require the existence of a spectral density function, i.e. it is
ready-made for non-stationary processes.

Although the spectral representation scheme provides a logical
theorem and a reliable result, which is limited however by its
computational cost in case of the random modeling of engineering
excitations. In practices, hundreds of random variables associated
with phase angles are usually required for securing an accepted
accuracy. This logical structure limits the applicability of spectral
representation scheme. Recently, Chen et al. developed an updated
spectral presentation scheme through constructing so-called ran-
dom harmonic functions [5]. In their work, the summation of a
few number of components of random harmonic functions can
derive the consistent spectrum to the objective spectral function.
This scheme was subsequently enhanced with the optimization of
frequency points in spectral function [4]. While the statistical
compatibility of sample processes derived from the updated
scheme still remain open.

This paper aims to developing a family of spectral representa-
tion schemes with just one or two elementary random variables
through defining the high-dimensional orthogonal random vari-
ables of classical spectral representation into the low-dimensional
orthogonal random functions. The highlight is that using the
probability-space partition techniques of random variables, a
complete set of sample processes with assigned probabilities can
be deduced from the power spectral density or its time-varying
counterpart. This treatment significantly reduces the number of
sample functions. It prompts, meanwhile, a ready integration with
the probability density evolution method (PDEM) resulting in an
efficient scheme upon the stochastic responses analysis and re-
liability assessment of nonlinear structures. The remaining sec-
tions arranged in this paper are distributed as follows. Section 2
revisits the spectral representation theorem of stationary and non-
stationary stochastic processes, where two families of spectral
representation schemes are addressed. The transform of high-di-
mensional orthogonal random variables of classical spectral re-
presentation into the low-dimensional orthogonal random func-
tions is detailed in Section 3. Stationary and non-stationary seis-
mic processes, for illustrative purposes, modeled by the renewed
spectral representation scheme are addressed in Section 4. Cases
study on stochastic response analysis and reliability assessment of
nonlinear structures subjected to random seismic processes are

included in Section 5, respectively. Probability density evolution
method is employed in the case study. The concluding remarks are
included in Section 6.

2. Conventional spectral representation of stochastic process

As indicated in the previous work, the sample functions of one-
dimensional and univariate non-stationary stochastic processes can
be derived by integrating the Priestley's evolutionary spectral re-
presentation theory [23,27,28]. A one-dimensional, real-valued,
univariate non-stationary process ( )X t with zero mean and two-
sided evolutionary power spectral density function

ω ω ω( ) = ( ) ( )S t A t S, ,X
2 , where ω( )A t, denotes a deterministic

modulating function of both t and ω, could thus be expressed as the
following integral formulation:

∫ ω ω ω ω( ) = ( ) ( ) + ( ) ( ) ( )
∞

X t t U t Vcos d sin d 1t t
0

where ω( )Ut and ω( )Vt denote the spectral-process components of
the real-valued non-stationary process ( )X t . Their increments

ω( )Ud t and ω( )Vd t must satisfy the following conditions:

ω ω ω( ) = ( ) = ≥ ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦E U E Vd d 0, 0 2t t

ω ω ω ω ω ω ω( ) ( ) = ( ) ( ) = ( ) ≥ ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦E U U E V V S td d d d 2 , d , 0 3t t t t X

ω ω ω ω ω ω ω ω( ) ( ′) = ( ) ( ′) = ′ ≥ ≠ ′ ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦E U U E V Vd d d d 0, , 0, 4t t t t

ω ω ω ω( ) ( ′) = ′ ≥ ( )⎡⎣ ⎤⎦E U Vd d 0, , 0 5t t

where [⋅]E indicates the mathematical expectation; ω( )S t,X denotes
the double-sided evolutionary power spectral density function of
real-valued non-stationary process ( )X t .

Eq. (1) could be written in the discrete form as follows:

∑ ω ω ω ω( ) ≈ ( )Δ ( ) + ( )Δ ( )
( )=

∞
⎡⎣ ⎤⎦X t t U t Vcos sin

6k
k t k k t k

0

where ω ω= Δkk , and ωΔ should be small sufficiently but finite so
that the discrete form Eq. (6) mathematically approximates to the
integral form Eq. (1). Obviously, the increments ωΔ ( )Ut k and

ωΔ ( )Vt k should satisfy the basic condition; say (Eqs. (2)–(5)).
If the increments ωΔ ( )Ut k and ωΔ ( )Vt k are defined as

Δ ω Δ ω( ) = ( ) = ( )U A X V A Y, 7t k k t k t k k t k, ,

ω Δω ω Δω= ( ) = ( )A S t k2 , , 8k t X k k,

where { }X Y,k k denotes a set of standard orthogonal random vari-
ables, and submits to the rules as follows:

δ= = = = = ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦E X E Y E X Y E X X E Y Y0, 0, 9k k j k j k j k jk

where δjk denotes the Kronecker–Delta function.
Substituting (Eqs. (7) and (8)) into Eq. (6), and taking a finite

series representation, the non-stationary process ( )X t can be re-
presented by the following finite series:

∑ ω Δω ω ω^ ( ) = ( ) ( ) + ( )
( )=

−
⎡⎣ ⎤⎦X t S t t X t Y2 , cos sin

10
N

k

N

X k k k k k,1
0

1

where ^ ( )X tN,1 denotes the simulated non-stationary process. It is
seen from (Eqs. (6) and (10)) that the original stochastic process
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