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a b s t r a c t

The Volterra/Wiener neural network (VWNN) has been shown to be an effective tool for on-line esti-
mation of non-linear restoring forces and responses. However, the power of the VWNN for on-line
identification has not been fully harnessed due to the high sensitivity of its parameters. This study adopts
a probabilistic approach in examining the effects of the VWNN's parameters on the robustness and
stability of its estimation capabilities. Large ensembles of simulations were conducted in which random
(earthquake-like) ground motions were used to excite representative non-linear structures, and on-line
estimation of their acceleration responses was performed. The nonlinearity in the systemwas introduced
via hysteretic restoring forces, and a variety of cases were tested, including softening and hardening.

The results showed that each design parameter within the VWNN was linked to a certain type of
performance sensitivity. The adaptive gain that controls the change in the weights of the VWNN was also
directly linked to the stability of the estimates, as small increases in the gain led to the estimates di-
verging. Within the neural network, the weight within the transfer function was found to directly cor-
relate with accuracy. The optimum set of parameters for a given excitation often produced unstable
solutions for other excitations, but by understanding the relationships between the parameters and their
sensitivities, a set of parameters could be carefully chosen to consistently produce accurate and stable
on-line estimates for all simulations. The knowledge gained from the relationships between VWNN
parameters also allowed for informed decisions on parameter sets for simulations involving different
classes of nonlinearities. Offering users a starting point provides a necessary and helpful feature so often
missing from other non-linear identification schemes that deal with non-parametric identification of
complex nonlinear systems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling and identification of non-linear phenomena is of
great importance to several fields of engineering, especially
structural dynamics and applied mechanics. Nonlinear hysteretic
behavior is commonly encountered in buildings and other struc-
tures that are subjected to earthquake excitation, in the joints of
aerospace structures, and in other vibration problems with me-
chanical systems. Hysteresis and nonlinear behavior have been the
subject of numerous previous studies, including the development
of models for bilinear hysteresis [1], yielding structures [2], de-
grading systems [3,4] and other hysteretic systems and structures
[5–10]. Many models have been used for capturing nonlinear dy-
namical systems, including single-valued models [11], distributed

element models [12], Masing models [13], modal models [14],
Leuven models for frictional force [15] and wavelets [16]. A helpful
survey of Bouc–Wen hysteretic models [17], a particular class of
nonlinear models, may be found in [18]. These models have con-
tinued to advance [19–23], better capturing the complexities of
different nonlinearities, such as pinching and degrading.

Several different approaches have been adopted for identifica-
tion of nonlinear systems. The approaches include stochastic lin-
earization techniques [24,25], nonparametric methods using
polynomial basis functions [26–28], identification using the ∞H
filter [29], optimization algorithms [30,31] and neural networks
[32,33]. The Bouc–Wen, in particular, has seen its parameters es-
timated via nonlinear optimization schemes [34], Bayesian state
estimate with bootstrap filters [35], adaptive on-line methods [36–
39], and applications of the extended Kalman filter (EKF) [40] and
the unscented Kalman filter [41]. Recent developments in non-
linear identification include the use of state-space models [42,43],
auto-regressive (AR) models [44], nonlinear regression models
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[45] and cellular automata nested neural networks [46]. A helpful
review of nonlinear identification in structural dynamics may be
found in [47].

Within the realm of nonlinear identification, on-line identifi-
cation schemes are of paramount importance because they allow
for the incorporation of flexible controller strategies that adapt
with the structure, as structures that behave nonlinearly may only
exhibit their governing response properties when excited by
strong motions. While there have been several developments in
on-line nonlinear identification [37,38,48,39,41,49], one of more
versatile methods involves the use of adaptive neural networks.
Specifically, an adaptive approach that utilizes Volterra/Wiener
neural networks (VWNNs) has been shown to be a highly effective
estimator of nonlinear responses [50]. Most importantly, the
adaptive VWNN estimator operates without requiring measure-
ments of the restoring forces; only measured responses are nee-
ded. These qualities have led to the incorporation of the VWNN
into embedded sensor networks [51] and into other adaptive
identification schemes [52].

While highly effective, the “black box” nature of neural net-
works, including the VWNN, often obscures the target system
characteristics and leaves the user without much control. A helpful
analysis of the adaptive VWNN estimator was presented in [53],
but a broader study was still needed to provide unfamiliar users
access to the internal workings of the VWNN. This paper presents
an in-depth and probabilistic view of the VWNN in a variety of
non-linear identification applications, in order to provide a greater
understanding of sensitivities of the VWNN design parameters as
they relate to stability and robustness.

2. Problem background

For illustration, consider the chain structure with n degrees-of-
freedom (DOFs) shown in Fig. 1; for the case of a more generic
structural system, readers are directed to the work in [50]. This
structure may be excited by ground motions xg, external forces fi,
and control forces ui, where i represents the given DOF. The ex-
ternal forces and control forces are directly applied to DOFs at
which the responses are measured. The connections between the
DOFs may be generally described by the restoring forces rj, which
capture the possible nonlinear behavior.

The equation-of-motion for the ith DOF may be written as
shown in Eq. (1), where mi and ẍi are the mass and acceleration of
the ith DOF, respectively, πrij is the connectivity of the restoring
forces, ẍg is the ground acceleration, and ne describes the number
of restoring force elements:
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Using the form shown in Eq. (1), the equations of motion for a
chain structure with three DOFs may be written as shown in the
following equation:
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Displacements and velocities do not appear explicitly in the
equations of motion because they are not directly available from
measurements, as it is generally assumed that only the response
accelerations may be measured. Additionally, it is often assumed
that ground accelerations may be measured as well. The equations
of motion may be re-written to reflect this, as shown in the fol-
lowing equation:
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2.1. Nonlinear restoring force

The restoring forces rj may possess nonlinear hysteretic char-
acteristics. The general dynamics of the restoring forces may be
described by the differential equation given in Eq. (5), where r, x ,
and ẋ are vectors for the restoring force, displacements, and ve-
locities, respectively:

( )̇ = ̇ = … ( )r j nr x x, , 1, , 5j j e

The function j describes a nonlinear continuous function that
captures the nonlinear hysteretic effects. In this study, a Bouc–Wen
model [10] was used, as shown in Eq. (6), where qj represents the
relative displacement of element j:
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3. Identification

From the perspective of the neural network, the individual
terms in Eq. (6) are ignored because no particular model is

Fig. 1. Multi-Degree-of-Freedom chain structure.
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