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a b s t r a c t 

An immersed boundary (IB)-lattice Boltzmann method (LBM) combined with a robust lat- 

tice spring model (LSM) was developed for modeling fluid–elastic body interactions. To in- 

clude the effects of viscous flow forces on the deformation of a flexible body, rotational in- 

variant springs were connected regularly inside the deformable body with square lattices. 

Fluid–solid interactions were due to an additional force density in the lattice Boltzmann 

equation enhanced by the split-forcing approach. To check the validity and accuracy of the 

numerical method, the flow over a rigid plate and the deformation of a cantilever beam 

were investigated. To demonstrate the capability of the new method, different test cases 

were examined. The deformation of a two-dimensional flexible vertical plate in a laminar 

cross-flow stream at different conditions was analyzed. The simulations were performed 

for different boundary conditions imposed on the elastic plate, namely, fixed-end corners 

and fixed middle point. Different flow conditions such as “steady flow regime”, “vortex 

shedding flow regime”, and the limit of “rigid body motion” were examined using the new 

IB-LBM-LSM approach. A general formulation for evaluating the deformation of the elastic 

body was also introduced, in which the position of the LSM nodes (inside the body) was 

updated implicitly at each time step. Two dimensionless groups, namely capillary num- 

ber ( Ca ) and Reynolds number ( Re ), were used for parametric study of the behavior of the 

flow around the deformable plate. It was found that for low Reynolds numbers ( Re < 50) 

and when the middle of the plate was fixed, decreasing the capillary number led to a de- 

crease in the drag coefficient. The fluctuation of the plate during the vortex shedding flow 

regime was also explored. It was found that when the middle of the plate was fixed, the 

critical Reynolds number for the initiation of vortex shedding increased. For Re > 100, the 

Strouhal number was observed to increase with the decrease in capillary number. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Deformation problems occur when objects are immersed in a viscous fluid. In this condition; one can refer to the motion 

of red blood cells [1] , interactions between heart leaflets and body fluid in biological systems [2,3] , beating cilia in airways 
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that causes pumping the mucus layer including entrapped pollutant particles [4,5] , fish swimming, self-propel of slender in 

micro-organisms [6] , and reconfiguration of creatures in nature to lessen drag [7] . 

Different models are available for simulating the deformable body motion under the effect of viscous flow with some suc- 

cess. For example, Buxton et al. [8] simulated the breathing-mode behavior of an elastic shell that was filled with fluid by 

using a combination of lattice Boltzmann and lattice spring models (LBM and LSM, respectively). MacMeccan et al. [9] cou- 

pled finite element analysis and LBM to describe the linear deformation of RBCs in shear flow. Wu and Aidun [10] applied 

the external body force method in LBM combined with LSM to track RBC deformation when suspended in fluids. They 

simulated 120 deformable RBCs at 47% volume fraction that led to significant changes in the effective viscosity of the sus- 

pension at a constant shear rate. In the hybrid models specified above, the fluid and solid motion were separately evaluated; 

however, there are conventional approaches that solve the two-phase flows concurrently [2,11] . 

In general, because of the two different types of computational domains, the study of fluid–structure interaction problems 

is considered complex and costly. Therefore, the development of a straightforward and robust strategy that efficiently solves 

the fundamental coupling problem and reduces numerical instabilities has been the objective of many researchers [2,12–16] . 

Non-body fitted mesh methods, such as the immersed boundary method, are one of the most attractive interface tracking 

schemes. In particular, in the case of hydrodynamics with a flexible boundary, the boundary evolves into complex and 

unknown shapes. Thus, the re-meshing process leads to a high computational cost. Peskin [2] was the first to develop 

the immersed boundary method for simulating blood flow in the heart. He expressed the flow and structural domains 

in the Eulerian and Lagrangian frames, respectively. He substituted the immersed solid with normal and angular springs, 

for which the total force of the springs at each Lagrangian node is scattered into the Eulerian nodes, and the momentum 

equations are resolved with an additional density force. In this case, the rigid boundary maps into highly stiff springs. 

This method is called the feedback IBM [17,18] , which requires user-defined parameters for evaluating the spring constants 

for different conditions. In this approach, the simulation of deformable particle requires a constitutive formula that relates 

external stresses to body deformation. There are two main differences between the LSM and the feedback-forcing IBM for 

the simulation of particle deformation: (1) using the LSM requires setting a collection of springs in the entire body, while in 

the IBM, deformation is portrayed by the deflection of a collection of springs just on the solid outer face. (2) For the LSM, 

the spring constant is analytically related to solid rigidity, while there is no direct relationship between these two variables 

in the feedback IBM [17] . However, the boundary force is calculated from the velocity and position of the interface. The 

IBM has been coupled with all traditional fluid solvers such as FVM and FDM [19,20] . Furthermore, a simple Cartesian 

computational domain is typically used in IBM; therefore, the LBM can be conveniently used for solving the fluid velocity 

associated with the IBM. 

The LBM originates from the lattice gas automata (LGA) technique [21] , which is based on the kinetic theory of gases. 

When a discrete particle number is used in this model, statistical noise will be generated. To remove this instability, in- 

stead of discrete Boolean variables, a distribution function is used [22] . Different types of lattice Boltzmann equation (LBE) 

have been developed, with many using the Bhatangar–Gross–Krook (BGK) model [23] . Collision and streaming operators 

are introduced for solving the LBE numerically. To recover the Navier–Stokes and continuity equations in mesoscale, the 

Chapman–Enskog expansion [24] is employed. 

A combination of LBM and IBM has significant advantage in solving the flow structure interaction (FSI) problems, which 

was first attempted by Feng and Michaelides [12] . They used the IBM proposed by Lai and Peskin [25] and the LBM as 

the fluid solver to analyze the particle sedimentation under the laminar regime. Mohd-Yusof [26] introduced a new type of 

IBM that does not require choosing arbitrary parameters and forcing terms. In that approach (the so-called direct-forcing 

method), a forcing term is added to the discretized equations that implicitly imposes the non-slip boundary condition in 

the immersed boundary method. In general, the direct forcing method has two different schemes for boundary force calcu- 

lation, namely sharp and diffuse interface schemes. In the sharp interface scheme [27] , the forcing points do not necessarily 

coincide with the interface, and they can be perched out of the boundary [19,20] . The boundary force on the forcing point 

is calculated by the linear interpolation from the boundary and fluid velocities in an arbitrary direction. It has been shown 

that the sharp scheme causes instability, especially for the moving boundary problem because of the interpolation [28,29] . 

In the diffuse interface scheme proposed by Silva et al. [30] , the force density is calculated from the velocity difference 

between the desired velocity and the non-forcing velocity on the boundary points. Values of non-forcing velocity on the 

boundary points are obtained by interpolating the local fluid velocity on the boundary points. In addition, the calculated 

force on these points is distributed through the fluid neighboring points. Interpolation is applied by the discrete delta func- 

tion, which was proposed by Peskin [31] . Depending on the extent of the interpolation area around each boundary point, 

the diffuse interface is divided into various types, namely two-point, four-point, and higher in which there are proportional 

delta functions [32] . For example, Delouei et al. [33] showed that for a stationary flow over a cylinder, the four-point diffuse 

interface has better agreement with experimental data. The application of IB-LBM based on the direct forcing method results 

in first-order accuracy because the momentum changes depend only on the last time step. Later, Guo et al. [34] proposed 

another IB-LBM based on the split forcing method in which the momentum exchange depends not only on the last time 

step but also on the force density at the present time. This approach increases the IB-LBM to second-order accuracy, which 

is important for non-uniform and unsteady problems. 

Although there are a number of earlier studies on fluid–elastic solid interactions [35,36] , there remains a need for the 

development of more accurate and computationally more efficient approaches that allow detailed and fast simulations. Di- 

rect numerical simulation techniques such as IB-LBM can provide insight into the mechanisms of FSIs. To the best of our 
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