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a b s t r a c t

We present a general method for the traction-separation law for the cohesive model of fiber reinforced
materials with brittle matrix. The proposed approach is based on results from the theories of marked
point and fiber processes. The application of stochastic notions in the field of traction-separation laws
and tension-softening curves for fiber reinforced composites allows the thorough investigation of the
random effect of the fiber reinforcement on cohesive behavior. The presented method accounts for
correlations between length and orientation as may be the case in real fiber reinforced composites. We
study the influence of randomness of fiber length and degree of anisotropy on the post-crack tension
softening curves. It turns out that fiber length and orientation distributions have a tremendous effect on
the crack-opening behavior.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Traction-separation laws are used for numerical and analytic
studies of the crack propagation for different load cases and var-
ious length scales. They describe the failure behavior of materials
and are often deployed in finite element analyses with predefined
crack paths. These traction-separation laws include the cohesive
stress at the crack plane sc and the crack width opening d. The
resulting coherence σ σ= ( )dc c is called in the following tension-
softening curve (TSC). The measurement of such a TSC is a for-
midable task and was carried out in the past for various materials
[1]. Due to the stochastic character of composite materials with
fiber reinforcement [2] traction-separation laws represent a very
helpful tool to investigate failure behavior of such materials.

The classical paper [3] presented a model which allows the
computation of force resistance of reinforcing fibers bridging
cracks in brittle matrix fiber reinforced composites (FRC) under
the assumption that the fibers have constant length and are iso-
tropically orientated. This work has been continued in many
subsequent scientific investigations (e.g. [4–7]).

However, in real FRC the fiber lengths are never constant. Fiber
length is affected by various factors such as processing of fibers
(cutting, chemical and mechanical treatments), embedding and

processing of reinforced material (mixing, casting, etc.). Refs. [8]
and [9] proposed several statistical distributions for random fiber
lengths.

In real structures also deviations from the isotropic orientation
distribution of fiber directions appear. While it seems to be natural
to expect some kind of anisotropy of fiber orientation in the case of
long-fiber reinforced materials, recent studies showed that in
some composite materials even short fibers are not always iso-
tropically oriented [10–12].

Finally, due to casting process, buoyancy effects and sedi-
mentation, it has to be assumed that in various composites lengths
and orientations of fibers are correlated. However, the joint in-
fluence of randomness of length and orientation of fibers in
composite materials on mechanical properties has never been
studied so far, although the spatial distribution of fibers in com-
posite materials can be determined statistically (see e.g. [13]).

In view of the general aim of improving or optimizing material
properties, the influence of randomness of fiber length and or-
ientation on mechanical properties is of great interest. It is natural
to ask: How will the post-crack TSC vary if the fiber length is not
constant but the mean fiber length is fixed? To which extent does
the TSC change if the fibers have some special direction distribu-
tion and are not isotropically oriented?

Obviously, there is a simple qualitative answer: Random fiber
lengths imply that there are fibers which are longer than the mean
fiber length. Therefore it might be expected that random fiber
lengths lead to a TSC higher than for constant fibers. Furthermore,
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due to friction of fibers during pull-out, TSC will indeed change if
the orientation of the fibers is not isotropic. Both effects are stu-
died in the present paper.

In order to demonstrate the application of our theory we use
results from the literature about the frictional bond between fiber
and matrix such as [14–16]. With the aid of such measurements
the post-crack TSC can be studied quantitatively.

The paper is organized as follows. The methods and assump-
tions made in order to derive the traction-separation law are
presented in Section 2. There we define the mathematical notions,
present an equation for TSC for general (joint) distributions of fiber
length and orientation and also point out further extensions of the
model. Finally, we investigate the impact of correlation of fiber
length and orientation on the post-crack TSC in Section 4.

2. Model assumptions and methods

2.1. Model assumptions and extensions

Throughout the paper we make the following model assump-
tions, which are mainly standard in the relevant literature, but
some extensions are new.

We consider a statistically homogeneous [17, p. 28] matrix
material with randomly distributed fibers under the following
conditions, see e.g. [3]: The matrix is discontinued by a planar
crack of width d, see Fig. 1, its deformation during the fiber pull-
out is neglected. The spatial distribution of the positions of fibers
in the composite is homogeneous and is independent of fiber
length and orientation, the fibers are straight with cylindrical
geometry. They behave linear elastically and rupture if their axial
stress reaches the fiber strength σf ,max. The Poisson effect of the
fibers during pull-out is neglected, the fiber–matrix bond is fric-
tional and the elastic bond strength is neglected.

As the crack opening d increases, the fiber ends are pulled out
of the matrix. Eventually one fiber end is pulled out completely or
the fiber ruptures due to high tension.

Additionally we assume that fiber length and orientation are
random. We describe this randomness by a two-dimensional
probability density function (p.d.f.). This means that fiber length
and fiber orientation are allowed to depend on each other, which
allows a realistic approximation of a wide class of composite
materials where one phase is built of fibers. Our approach can
easily be combined with various models concerning the fiber pull-
out mechanism.

2.2. Theoretical background, distribution of intersecting fibers

In order to fix notation we describe fiber systems and their
characteristics in what follows.

A system of fibers is a spatial set of line segments. Each fiber is

described by a reference point, length and angle w.r.t. the normal
of some given crack plane. For convenience the crack plane is as-
sumed to be the (x,y)-plane and the reference point of each fiber is
its top point (in the sense of the z-axis). The fiber angle is the polar
angle β of the fiber. Fig. 1 shows the underlying geometry of a
single fiber that intersects a crack plane Ac with inclining angle β
and embedded residual lengths r1 and r2.

The random set of fibers is described by the following summary
characteristics:

1. Nsp – mean number of fibers (i.e. fiber reference points) per unit
volume.

2. β( )f l,L Bsp, , – joint p.d.f. of fiber length l and polar angle β in
space.

These characteristics are often known a priori and they are mea-
surable e.g. by computed tomography, see [18,19], and [13,20].

If angles β and lengths l are statistically independent the joint
p.d.f. is the product of the univariate p.d.f. ( )f lLsp, and β( )f Bsp, of
length and angle.

The parameter Nsp belongs to a group of summary mean-value
characteristics, which include also fiber volume fraction Vf, mean
fiber length l and fiber cross-sectional area Af. They satisfy the
equation

=
( )

N
V

lA
.

1
f

f
sp

After the formation of a planar crack, i.e. when d¼0, we are
interested in the random embedded residual fibre lengths and the
inclination angle w.r.t. the normal of the crack plane of the fibers
which intersect the crack, see Fig. 1. We describe these quantities
by the characteristics

1. Npl – mean number of fibers intersecting the crack plane per
unit area and

2. β( )f r r, ,R R Bpl, , , 1 21 2
– joint p.d.f. of residual lengths above and below

the crack plane and polar inclination angle.

There are close mathematical relationships between these
plane-related characteristics and the space-related characteristics
of the fiber system. In particular, we have (cf. [21, Section 8.4])

= ( ) ( )N N L Bcos . 2pl sp sp sp

In this equation the expression

∫ ∫ β β β( ) = ( )
π ∞

 L B l f l lcos cos , d dL Bsp sp
0

2

0
sp, ,

denotes the mean of βl cos . (We used here the notation Lsp and
Bsp for the random variables of length and polar angle.) For iso-
tropically oriented fibers of constant length l0, i.e. the case studied

Fig. 1. Left: A fiber intersecting the crack plane Ac having length = +l r r1 2 and inclining angle β. The reference point of the fiber is denoted by ( )x y z, , . Right: At crack width d
the embedded fiber is being pulled out of the matrix.
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