
Synthetic turbulence: A wavelet based simulation

Chao Yin a, Teng Wu b,n, Ahsan Kareem a

a NatHaz Modeling Laboratory, Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,
Notre Dame, IN 46556, USA
b Department of Civil, Structural and Environmental Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA

a r t i c l e i n f o

Article history:
Received 18 June 2015
Received in revised form
14 May 2016
Accepted 23 May 2016
Available online 31 May 2016

Keywords:
Stochastic simulation
Turbulent flow
Wind process
Intermittency
Log-Poisson model
Wavelet

a b s t r a c t

The treatment of wind-induced vibrations is an important consideration in the design of civil structures
with increasing span-lengths and heights. The turbulence in the atmospheric boundary layer has been
treated as Gaussian in conventional stochastic simulation schemes, wherein higher-order statistics have
been disregarded. However, experimental evidence points at turbulence being a typical multifractal
process, which suggests that the statistics at different scales of atmospheric turbulence are not strictly
self-similar but exhibit stronger non-Gaussianity as the length scale decreases. Intermittency char-
acterized by the occasional bursts in the wind velocity leads to non-Gaussianity. Intermittency and its
potential impact on wind-induced response have been neglected though. Recent studies have addressed
the multifractal property of turbulence in wind with wavelet-basis representations of the log-Normal or
log-Poisson models. These schemes offer new insight into the simulation of turbulent wind, but suffer
from several significant drawbacks, such as the inappropriate sampling of the wavelet coefficients. To
overcome these shortcomings, a new simulation scheme, based on the Haar wavelet representation, is
proposed in this study where the exact relation between the wind velocities and the wavelet coefficients
is introduced. In addition, the effects of intermittency on the wind-induced response of structures are
evaluated for a number of cases. A quasi-steady theory-based assessment indicates that the inter-
mittency results in amplifying extremes of the wind-induced response and exhibits higher impact on
relatively more rigid structures. It is likely that intermittency may invoke flow-structure interaction with
possible enhancement in load effects at related scales, which may further amplify the extremes.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Civil structures, such as bridges, buildings, transmission towers
and residential structures, are vulnerable to the winds and the
associated turbulence. Turbulence has attracted a wide range of
studies including the chaotic features, which imply high level of
nonlinearity and unpredictability. In general, there are two distinct
approaches to describe a turbulent flow: one developed from first
principles using the equations of motion, e.g. Navier–Stokes
equations, or the probabilistic framework utilizing statistics of
turbulent flows based on observations.

Numerical simulation of turbulent wind field using the Navier–
Stokes equations is computationally very intensive, especially at
high Reynold numbers, whereas statistical approaches can sig-
nificantly reduce the computational effort by utilizing turbulence
statistics. Conventionally, turbulence in the wind field is char-
acterized by the second-order statistics. For example, both the
spectral representation and the time series models are based on the
second-order statistics with implied assumption of Gaussianity

[15,16,21]. However, turbulence has significant higher-order in-
formation, which is usually described in terms of velocity increment
between two time instants. Experiments have shown that the sta-
tistics of the velocity increment depart gradually away from Gaus-
sianity as the time interval decreases [2,5,7]. The K41 theory of
turbulence divides the velocity increment into energy-containing,
inertial and dissipation sub-ranges [13]. The probability density
functions (PDFs) of velocity increments in the inertial sub-range
present longer tails than the Gaussian distribution. The non-Gaus-
sianity is highly correlated with the intermittency in turbulent
flows. Theoretically, non-Gaussianity features of the PDF reflect the
presence of intermittency in the velocity increments and gradients
(e.g., [23]). The intermittency has potential effects on wind-induced
response because it occurs suddenly with attendant high energy,
which may be underestimated by a tacit Gaussian assumption. The
higher-order statistics of the wind velocity process can be ap-
proximately derived according to their relation to the second-order
statistics. For example, both the log-Normal model [14] and the log-
Poisson model [19] show high-fidelity for the derivation of higher-
order statistics. The log-Poisson model is shown to perform better
in She and Waymire [20], and thus it has been used in the present
simulation scheme. Indeed, both the log-Normal model and the log-
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Poisson model introduce a multifractal description of wind fluc-
tuations, rendering the simulation process non-trivial. In this con-
text, a wavelet expansion, which is a multi-scale modeling tool, is a
preferred basis (e.g., [1,10,12]). In this approach, the sampling of
wavelet coefficients from the multifractal statistics is crucial to a
high-fidelity simulation of the wind field. In these references initial
work in this context was introduced which is further explored and
refined here.

This study proposes a new scheme for simulating wind velocity
based on the Haar wavelet. This entails several assumptions, i.e.,
(1) the wind velocity increment in the energy-containing sub-
range is only affected by the boundary conditions; (2) statistics of
the wind velocity increment in the inertial sub-range follow a log-
Poisson model for both stationary and non-stationary winds;
(3) the wind velocity increment in the energy-dissipation sub-
range has negligible contribution to wind fluctuations with prac-
tical implications, and is therefore disregarded. The second as-
sumption relates to the Kolmogorov's conjecture that within a
small time interval the statistics of velocity increment are ap-
proximately steady even when the wind velocity is not [13].

The higher-order effects in velocity increments related to in-
termittency are highlighted here. Typically, the wind-induced re-
sponse is based on the gust loading factor which involves a peak
factor derived under Gaussian assumption. Three major issues,
which have been usually ignored, are taken into account in the
study to examine their contribution: the quadratic velocity term;
the inclusion of relative motion in the formulation of aerodynamic
force; the higher-order statistics of velocity fluctuations.

2. Description of the wind velocity process

A wind velocity as a random process can be expressed in terms
of the Karhunen–Loeve (K–L) expansion as
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The Fourier basis is often used in the simulation of a stationary
process, whereas a wavelet basis is equally applicable to both
stationary and non-stationary processes. Both the spectral re-
presentation and the time series (e.g., ARMA) models imply sta-
tionarity with the assumption that { }θξ ( )
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in terms of a wavelet basis as (e.g., [8,18])
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Gaussian random vector. As a result, the wind velocity can be
further expressed as
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, which also represents the vector of
wavelet coefficients.

Turbulent wind may be treated as a 1/f noise whose power
spectrum obeys the power law [3]. For example, the power spec-
trum of a typical turbulent wind has the relation S(f)∼f-5/3 in the
inertial range [13]. The power law implies the existence of self-si-
milarity or scale-invariance in turbulence [3], i.e., the PDFs of ve-
locity increments at different length or time scales are similar. Here
the velocity increment is defined as δV¼V(t)�V(t�τ), in which τ is
a time interval. However, further investigation of turbulence
structure has shown that the PDFs at different scales are not strictly
similar but gradually depart from Gaussian density functions as the
length scale decreases. This scale-dependent or multifractal prop-
erty implies that the turbulent wind is not a Gaussian process (e.g.,
[4]). Fig. 1 presents the PDFs of velocity increments in various time
intervals for the comparison of a measured turbulent wind velocity
and the corresponding spectral representation. It shows that, the
spectral representation naturally leads to the PDFs at different time
intervals to be Gaussian, whereas for the measured turbulent wind,
the PDFs present tails longer than the Gaussian. The longer tails in
the PDFs are a reflection of the intermittency phenomenon of tur-
bulence. The statistical explanation refers to the theory of large-
deviation [7]. Due to the multifractal nature of turbulence, a multi-
scale simulation framework like the wavelet representation would
be a more appropriate representation of wind velocity fluctuations,
which could be utilized for numerical simulation.

2.1. Multifractal property of turbulence

The inertial range of turbulent wind is characterized by two
length scales, lc and ld, which represent the smallest scales of the
energy-containing range and inertial range, respectively. The mul-
tifractal property of turbulence can be quantified following two
basic parameters, the energy dissipation rate εl and the velocity
increment δVl. Here δVl denotes the velocity increment with time
interval l. For the velocity increment within the inertial range, the
pth order moments of δVl and εl are both dependent on l [20]
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where ∙ denotes the expectation operator; τp and αp are both the
exponents related to the pth order moment.

2.2. A hierarchical relation of velocity increments

In K41 theory, τp¼0, implying that the statistics of ε is scale-
invariant. However, for a measured turbulence, the statistics of ε are
actually scale-dependent (τp≠0). Various models have been pro-
posed to model the statistics of δv and ε through the modification
of τp [14,19]. Among them one of the most promising models may
be the log-Poisson model [19,20]. Let lj denote the length of the jth
scale. As j decreases, the scale becomes larger. The log-Poisson
model suggests that, within the inertial range, the velocity incre-
ments δVl1 and δVl2 have the following hierarchical relation [20]
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