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a b s t r a c t

It is well known that an engineering surface is composed of a large number of wavelengths of roughness
that are superimposed on each other. This paper proposes a new method for surface topography analysis
based on empirical mode decomposition. The method provides good adaptive separation of surface profile
into multiple bands. Applications are conducted by using a milled engineering surfaces to demonstrate the
feasibility and applicability of the empirical mode decomposition method in the analysis of engineering
surfaces.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that engineering surfaces are comprised of a
range of spatial wavelengths. Because these multi-scale features are
related to different aspects of the processes the surface has under-
gone and closely related to the friction and wear properties of a
surface, the analysis and characterization of these features becomes
an important aspect of manufacture.

In order to separate surface profile data into different wave-
length components, many kinds of filtering techniques are adopted,
such as 2RC filter and Gaussian filter [1]. Liu and Raja [2] and Josso et
al. [3] presented a study on the application of wavelet filter for ana-
lyzing multi-scale engineering surfaces. Morphological filter was
applied by Dietzsch et al. [4]. If the above methods are adopted, we
should pre-set a series of parameters such as cutoff and bandwidth,
and there is only little correlation between these subjective defined
parameters and actual components of profile.

In 1998, Huang first proposed empirical mode decomposition
(EMD) [5], which can decompose the non-linear and non-stationary
signals, then give a better understanding of the physics behind the
signals. The major advantage of the EMD is that the decomposi-
tion result is derived from the signal itself. Hence, the analysis is
adaptive.

In this paper, EMD method is adopted to investigate the multi-
scale properties of surface roughness, a milled surface profile data
will be used to validate the capabilities of the EMD method.
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2. A brief review of EMD method

2.1. EMD algorithm

EMD method was originally used for the analysis of vibration
signal. Because the EMD method is highly efficient in non-
stationary and non-linear data analysis. It has been widely applied
to many kinds of signal analysis. For example, fault diagnosis of
machinery [6], potential field data analysis [7]. EMD method is a
self-adaptive analysis method which can decompose a complicated
signal into a collection of intrinsic mode functions (IMFs) based on
the local characteristic scale of the signal.

The essence of the EMD is to identify the IMF by characteristic
time or spatial scales, which can be defined locally by the distance
between two extrema of an oscillatory mode. The EMD picks out
the highest frequency oscillation that remains in the signal. Thus,
locally, each IMF contains lower frequency oscillations than the one
extracted just before [8].

EMD method is developed from the simple assumption that
any signal consists of different simple intrinsic modes of oscilla-
tions. Each linear or non-linear mode will have the same number
of extrema and zero-crossings. There is only one extrema between
successive zero-crossings. Each mode should be independent of the
others [9]. In this way, each signal could be decomposed into a num-
ber of intrinsic mode functions (IMFs), each of which must satisfy
the following definition [10]:

(1) In the whole data set, the number of extrema and the number
of zero-crossings must either equal or differ at most by one.

(2) At any point, the mean value of the envelope defined by local
maxima and the envelope defined by the local minima is zero.
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The IMFs indicate the simple oscillation mode involved in the
signal. EMD, a “sifting” process, is used to extract the IMFs by the
following steps [10]:

(1) Identify all the extrema of the signal, and connect all the local
maxima by a cubic spline line as the upper envelope. Repeat the
procedure on the local minima to produce the lower envelope.

(2) Designate the mean of the two envelopes as m1(t), and the
difference between the signals x(t) and m1(t) as the first com-
ponent, h1(t), i.e.

x(t) − m1(t) = h1(t). (1)

(3) If h1(t) is an IMF, take it as the first IMF of x(t) (the criterion of
IMF is shown in Section 2.2). If h1(t) is not an IMF, take it as the
original signal and repeat the steps above until h1k(t) is an IMF,
and designate h1k(t) as c1(t):

c1(t) = h1k(t). (2)

(4) Separate the first IMF c1(t) from x(t) by

x(t) − c1(t) = r1(t). (3)

(5) Treat residue r1(t) as the original signal and subject it to the
same process as above, so that we can get other IMFs, c2(t),
c3(t), . . ., cn(t), which satisfy

r1(t) − c2(t) = r2(t)
•
•
•

rn−1(t) − cn(t) = rn(t)

⎫⎪⎪⎬
⎪⎪⎭ (4)

(6) By summing up Eqs. (3) and (4), we finally obtain

x(t) =
n∑

i=1

ci(t) + rn(t). (5)

Thus, one can achieve a decomposition of the signal into n-
empirical modes, and a residue rn(t), which is the mean trend of
x(t). The IMFs c1(t), c2(t), . . ., cn(t) include different frequency bands
ranging from high to low. The frequency components contained in
each frequency band are different and change with the variation of
signal x(t). So, EMD is a self-adaptive signal decomposition method.

Empirical mode decomposition (EMD) has the feature of not
assuming a time or spatial series is linear or stationary (like Fourier
analysis). When dealing with surface topography data, where most
variables exhibit non-linear and non-stationary behavior, this fea-
ture is particularly useful, allowing more meaningful quantification
of the proportion of variance in a spatial series due to fluctuations
at different spatial scales than other techniques. Furthermore, the
EMD does not use any pre-determined filter or wavelet function,
which means that the decomposition results are more objective
and accurate than other techniques.

2.2. The criterion for stopping the sifting process

The main process of EMD decomposition is the sifting process.
Through the sifting process, we can extract the IMFs from origi-
nal signal. Therefore, we should set up a criterion for stopping the
sifting process to ensure the IMF components retain enough phys-
ical sense. In order to ensure the orthogonality and stability of IMF,
we used the energy difference tracking method as the stopping
criterion for sifting process [11].

Suppose that signal x(t) contains a finite number of mutually
irrelevant components xi(t).

x(t) = x1(t) + x2(t) + · · · + xn(t) =
n∑

i=1

xi(t). (6)

The energy of signal x(t) is calculated as

Ex =
∫ ∞

−∞
x2(t) dt =

∫ ∞

−∞

[
n∑

i=1

xi(t)

]2

dt. (7)

And we define the energy of xi(t) as

Ei =
∫ ∞

−∞
xi

2(t) dt. (8)

Due to the irrelevance between {xi(t), i = 1, 2, . . ., n}, in other
words, because of the orthogonality, then we can obtain∫ ∞

−∞
xi(t)xj(t) dt ≈ 0, i /= j (9)

And then signal x(t) has total energy as

Ex =
∫ ∞

−∞

[
n∑

i=1

xi(t)

]2

dt =
∫ ∞

−∞
x1

2(t) dt +
∫ ∞

−∞
x2

2(t) dt + · · ·

+
∫ ∞

−∞
xn

2(t) dt = E1 + E2 + · · · + En (10)

If EMD is used to decompose signal and it is supposed that the
component c1(t) is exactly the orthogonal component x1(t) of x(t),
after c1(t) has been separated from x(t), the residual signal energy
is calculated as follows:

E2,...,n =
∫ ∞

−∞

[
n∑

i=2

xi(t)

]2

dt =
∫ ∞

−∞

[
n∑

i=2

xi
2(t)

]
dt (11)

and

Ex = E1 + E2,...,n (12)

If c1(t) is not the orthogonal component of x(t), then

Ex − (E1 + E2,...,n) /= 0 (13)

We define Eerror as follows:

Eerror = |Ex − (E1 + E2,...,n)| (14)

Considering that there are large difference among the energy
value of these IMFs, in order to facilitate follow-up analysis and
calculation, we make these energy value normalized.

Eerror = Eerror

E1
(15)

The smaller the Eerror, the more entire integrity and orthog-
onality the decomposed results will attain. Hence, we can track
Eerror when the signal is decomposed by EMD method. When Eerror

reaches a certain minimum (in this paper, we set the Eerror = 0.01),
sifting process is completed. Thus the obtained IMF component is
an orthogonal one of the original signal.

3. The decomposition of a milled surface profile by EMD
method

The measured profile of a milled surface is shown in Fig. 1 [12].
The data were measured at a 0.25 �m sampling interval for a length
of 5.6 mm.
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