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a b s t r a c t

For degraded multi-state systems, it has been assumed in the literature that, for any given system, the
instantaneous degradation rates are fixed. This paper attempts to study a three-state degraded system
that have random degradation rates among its states. In particular, a reliability model for such a three-
state system is presented assuming that the degradation rates are random and statistically dependent.
The dependence is modeled by copulas, and dynamic reliability analysis of the system is performed.
Graphical illustrations are provided, and comparisons are made with the corresponding results for the
classical fixed rates model.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-state systems can perform their tasks with various dis-
tinguished levels of efficiency, usually referred to as performance
rates [1]. One of the most suitable approaches for modeling a
multi-state system in a dynamic way is based on Markov pro-
cesses. In Liu and Kapur [2], time dependent system state prob-
abilities have been obtained assuming that the degradation in the
multi-state system follows a Markov process. In their derivations,
degradation rates are denoted by the parameters λr s, , where λr s, is
the instantaneous degradation rate from state r to a lower state s,
for >r s. Thus, the system state probabilities are represented as a
function of the parameters λr s, . An extensive discussion on sto-
chastic process based modeling of multi-state system is presented
in [3]. Various methods have been applied for dynamic reliability
evaluation of multi-state systems. The combined universal gen-
erating function and stochastic process method have been devel-
oped for dynamic analysis of multi-state systems [3]. Xue and Yang
[4] studied some dynamic reliability characteristics for multi-state
systems by combining Markov processes with multi-state relia-
bility theory. Eryilmaz [5] defined and studied mean residual and
mean past lifetime functions for multi-state systems. Sheu and
Zhang [6] studied multi-state systems when the degradation in
multi-state elements follows a non-homogenous Markov process.
Their method is based on the Lz-transform method. For the details
of the Lz -transform method, we refer to Lisnianski [7]. Other re-
cent studies on dynamic analysis of multi-state systems are [8–10].

Generally, it has been assumed in the literature that, for any

given system, the instantaneous degradation rates λr s, are con-
stant. However, within certain populations, the degradation rates
λrs can vary from system to system even if the systems have been
setup or produced by the same supplier. For example, a complex
system is operated in a random environment and the magnitudes
of λrs change as the environment changes. Such situations are also
common for household items. For example, a washing machine of
the same brand that is used by different families might have dif-
ferent rates of degradation. Thus, modeling the rates λrs as random
variables may lead to make a more comprehensive time depen-
dent reliability analysis that considers deviations in λrs for the
systems/units used under different conditions.

In this paper, we present a reliability model for a three-state de-
graded system when the degradation in system follows a homo-
geneous Markov process having random degradation rates (see, e.g.
[11] for three-state systems). Such a model is described by two de-
gradation rates λ10 and λ21 which are assumed to be random and
statistically dependent. Although the paper deals with the special case
when the system has three states, as stated in Section 5, the model
can be extended to the systems having multi states. Our method for
modeling dependence between λ10 and λ21 is based on copulas. Co-
pulas provide a way of specifying joint distribution of random vari-
ables if only the marginal distributions of the random variables are
known. A detailed review of copulas can be found in [12].

The present paper is organized as follows. In Section 2, we
present main definitions, assumption, and preliminary results that
will be helpful throughout the paper. Section 3 involves modeling
with Farlie–Gumbel–Morgenstern copula. In Section 4, we obtain
some ordering relations for comparing two independent systems
based on their degradation rates. Section 5 contains a numerical
example to illustrate the findings of the paper.
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2. Definitions, assumptions and preliminaries

Throughout the paper we assume the following for the system
under consideration.

1. The system can be in one of three possible states 0,1,2 at any
time, where the extreme states “0” and “2” represent the com-
pletely failed and completely working states respectively, and the
state “1” represents partially working state.

2. The state set { }0, 1, 2 of the system are ordered, and the
states are disjoint.

3. The system degrades with time t from the perfect state to the
lower states, and only minor failures occur in the system. That is,
the system cannot transit from the state “2” to the state “1”.

4. The system is nonrepairable.
Under the assumption that the degradation in the system fol-

lows a homogeneous Markov process, the time T2 spent by the
system in state “2” and the time T1 that is spent by the system in
state “1” are independent, and { }> = λ−P T t e t

1 10 and

{ }> = ≥λ−P T t e t, 0t
2 21 [13]. That is, the sojourn time distribution

from state “1” to state “0” is exponential with mean λ1/ ,10 and from
state “2” to “0” it is exponential with mean λ1/ ,21 and both dura-
tions are independent.

It is reasonable to assume a statistical dependence between the
random variables λ10 and λ21 since for example larger values of λ21
may lead to a faster transition from partially working state “1” to
completely failed state “0”. The degree of dependence between λ10
and λ21 heavily depends on the system and the definition of its
states.

Let the joint cumulative distribution function of ( )λ λ,10 21 is given
by

{ }λ λ( ) = ≤ ≤H x x P x x, , .1 2 10 1 21 2

Assume that the dependence between λ10 and λ21 is modeled by a

copula function →⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦C: 0, 1 0, 12 such that

( ) = ( ( ) ( )) ( )H x x C F x F x, , , 11 2 1 1 2 2

where { }λ( ) = ≤F x P x1 10 and { }λ( ) = ≤F x P x2 21 are the marginal
distribution function of λ10 and λ21, < <x0 1. The supports of the
distributions F1 and F2 are chosen to be ( )0, 1 since it is reasonable
to assign a value for the rates from the unit interval. Under these
assumptions, the random variables T1 and T2 are no longer in-
dependent. However, they are conditionally independent given λ10
and λ ,21 and

{ }λ λ> > ∣ = = = − −P T t T t x x e e, , .x t x t
1 1 2 2 10 1 21 2 1 1 2 2

Thus the joint survival function of ( )T T,1 2 can be written as

∫ ∫

∫ ∫

{ } { }

( ) ( )

λ λ> > = > > ∣ = =

= ( )
− −

P T t T t P T t T t x x

h x x dx dx e e h x x dx dx

, , ,

, , , 2
x t x t

1 1 2 2
0

1

0

1

1 1 2 2 10 1 21 2

1 2 2 1
0

1

0

1

1 2 2 11 1 2 2

where ( ) = ( )∂
∂ ∂h x x H x x, ,
x x1 2 1 2

2

1 2
is the joint probability density

function (pdf) of λ10 and λ21. We have the following expression for

( )h x x,1 2 .

( ) = ( ( ) ( )) ( ) ( ) ( )h x x c F x F x f x f x, , , 31 2 1 1 2 2 1 1 2 2

where ( ) = ( )∂
∂ ∂c u u C u u, , ,
u u1 2 1 2

2

1 2
and fi(x) is the pdf associated with

( ) =F x i, 1, 2i . Thus substituting (3) in (2), the joint survival func-
tion of ( )T T,1 2 can be rewritten as

∫ ∫{ }> > = ( ( ) ( )) ( )

× ( ) ( )

− −P T t T t e e c F x F x f x

f x dx dx

, ,

4

x t x t
1 1 2 2

0

1

0

1

1 1 2 2 1 1

2 2 2 1

1 1 2 2

In Section 3, we derive explicit expressions for the joint and
marginal survival functions of T1 and T2 when the copula function
C belongs Farlie–Gumbel–Morgenstern (FGM) family of copulas
and the random variables λ10 and λ21 are modeled by power
distributions.

3. Modeling with FGM copula

There are many copulas that can be used for modeling the
dependence between the random variables. A fundamental issue
of using copulas is how to choose an appropriate copula to model
the dependence structure between the random variables. Each
copula has its own dependence structure and properties. These
properties should be taken into account in the model construction.

Let the copula function in (1) is given by

{ }α( ) = + ( − )( − ) ( )C u u u u u u, 1 1 1 , 51 2 1 2 1 2

for α ≤ 1, and ≤ ≤ =u i0 1, 1, 2i . The copula given by (5) is
known to be FGM copula, it allows for modeling both positive
dependence (when α ≥ 0) and negative dependence (when
α ≤ 0) [14]. FGM type copula has been used in the context of re-
liability due to its mathematically tractable form [15,16].

Assume that the random variables λ10 and λ21 have power
distributions with cdfs

{ }λ( ) = ≤ = < < >F x P x x x a, 0 1, 1,a
1 10 11

and

{ }λ( ) = ≤ = < < >F x P x x x a, 0 1, 1.a
2 21 22

Then from (3), the joint pdf of λ10 and λ21 is obtained as

α( ) = + ( − )( − ) ( )
− − ⎡⎣ ⎤⎦h x x a a x x x x, 1 1 2 1 2 . 6

a a a a
1 2 1 2 1

1
2

1
1 2

1 2 1 2

Thus using (4), the joint survival function of ( )T T,1 2 can be com-
puted as follows.

Nomenclature

0 complete failure state
1 partially working state
2 perfect functioning state
λ10 instantaneous degradation rate from state “1” to state

“0”
λ21 instantaneous degradation rate from state “2” to state

“1”
( )H x x,1 2 the joint cumulative distribution function of λ10 and

λ21
( )h x x,1 2 the joint probability density function of λ10 and λ21

C copula
FGM Farlie–Gumbel–Morgenstern
T1 time spent by the system in state “1”
T2 time spent by the system in state “2”
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