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a b s t r a c t

In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the
relative significance of the uncertain input parameters of a model. We herein introduce a novel approach
for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial
meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be
particularly efficient in representing responses of high-dimensional models, because the number of
unknowns in their general functional form grows only linearly with the input dimension. The proposed
approach is validated in example applications, where the Sobol' indices derived from the meta-model
coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-
Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are con-
fronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical
rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In
the examined applications, indices based on the novel approach tend to converge faster to the reference
solution with increasing size of the experimental design used to build the meta-model.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Robust predictions via computer simulation necessitate ac-
counting for the prevailing uncertainties in the parameters of the
computational model. Uncertainty quantification provides the
mathematically rigorous framework for propagating the un-
certainties surrounding the model input to a response quantity of
interest. It comprises three fundamental steps [1,2]: First, the
model representing the physical system under consideration is
defined; the model maps a given set of input parameters to a
unique value of the response quantity of interest. The second step
involves the probabilistic description of the input parameters by
incorporating available data, expert judgment or a combination of
both. In the third step, the uncertainty in the input is propagated
upon the response quantity of interest through repeated evalua-
tions of the model for appropriate combinations of the input
parameters. In cases when the uncertainty in the response proves
excessive or when it is of interest to reduce the dimensionality of
the model, sensitivity analysis may be employed to rank the input
parameters with respect to their significance for the response
variability. Accordingly, important parameters may be described in
further detail, whereas unimportant ones may be fixed to nominal
values.

Methods of sensitivity analysis can be generally classified into

local and global methods. Local methods are limited to examining
effects of variations of the input parameters in the vicinity of
nominal values. Global methods provide more complete in-
formation by accounting for variations of the input parameters in
their entire domain. Under the simplifying assumption of linear or
nearly linear behavior of the model, global sensitivity measures
can be computed by fitting a linear-regression model to a set of
input samples and the respective responses (see e.g. [3,4] for de-
finitions of such measures). The same methods can be employed in
cases with models that behave nonlinearly but monotonically,
after applying a rank transformation on the available data. Var-
iance-based methods represent a more powerful and versatile
approach, also applicable to nonlinear and non-monotonic models.
These methods, known as functional ANOVA (denoting ANalysis Of
VAriance) techniques in statistics, rely upon the decomposition of
the response variance as a sum of contributions from each input
parameter or their combinations [5]. The Sobol' indices, originally
proposed in [6], constitute the most popular tool thereof. Although
these indices have proven powerful in a wide range of applica-
tions, their definition is ambiguous in cases with dependent input
variables, which has led to different extensions of the original
framework [7–11]. An alternative perspective is offered by the
distribution-based indices, which are well-defined regardless of
the dependence structure of the input [12–16]. The key idea is to
use an appropriate distance measure to evaluate the effect of
suppressing the uncertainty in selected variables on the prob-
ability density function (PDF) or the cumulative distribution
function (CDF) of the response. These indices are especially useful
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when consideration of the variance only is not deemed sufficient
to characterize the response uncertainty. However, contrary to the
Sobol' indices, they do not sum up to unity, which may hinder
interpretation. For further information on global sensitivity ana-
lysis methods, the interested reader is referred to the review pa-
pers [17,3,4,18].

It should be mentioned that different classifications of sensi-
tivity analysis techniques can be found in the literature. In cases
when one needs to perform a fast exploration of the model be-
havior with respect to a possibly large number of uncertain input
parameters, the so-called screening methods may be employed.
These methods can provide a preliminary ranking of the im-
portance of the various input parameters at low computational
cost before more precise and costly methods are applied. The
Cotter method [19] and the Morris method [20] are widely used
screening methods, with the latter covering the input space in a
more exhaustive manner. The more recently proposed derivative-
based global sensitivity measures can also be classified into this
category, while they also provide upper bounds for the Sobol' in-
dices [21–23].

The focus of the present paper is on sensitivity analysis by
means of Sobol' indices. We limit our attention to cases with in-
dependent input and address the computation of these indices for
high-dimensional expensive-to-evaluate models, which are in-
creasingly used across engineering and sciences. Various methods
have been investigated for computing the Sobol' indices based on
Monte Carlo simulation [24–28]; because of the large number of
model evaluations required, these methods are not affordable for
computationally costly models. To overcome this limitation, more
efficient estimators have recently been proposed [29–32]. A dif-
ferent approach is to substitute a complex model by a meta-model,
which has similar statistical properties while maintaining a simple
functional form (see e.g. [33–38] for global sensitivity analysis with
various types of meta-models). Sudret [39] proposed to compute
the Sobol' indices by post-processing the coefficients of poly-
nomial chaos expansion (PCE) meta-models. The key concept in
PCE is to expand the model response onto a basis made of or-
thogonal multivariate polynomials in the input variables. The
computational cost of the associated Sobol' indices essentially
reduces to the cost of estimating the PCE coefficients, which can be
curtailed by using sparse PCE [40]. The PCE-based approach for
computing the Sobol' indices is employed by a growing number of
researchers in various fields including hydrogeology [41–43],
geotechnics [44], ocean engineering [45], biomedical engineering
[46], hybrid dynamic simulation [47] and electromagnetism
[48,49]. Unfortunately, the PCE approach faces the so-called curse
of dimensionality, meaning the exploding size of the candidate
basis with increasing dimension.

The goal of this paper is to derive a novel approach for solving
global sensitivity analysis problems in high dimensions. To this
end, we make use of a recently emerged technique for building
meta-models with polynomial functions based on low-rank ap-
proximations (LRA) [50–55]. LRA express the model response as a
sum of a small number or rank-one tensors, which are products of
univariate functions in each of the input parameters. Because the
number of unknown coefficients in LRA grows only linearly with
the input dimension, this technique is particularly promising for
dealing with cases of high dimensionality. We herein derive ana-
lytical expressions for the Sobol' sensitivity indices based on the
general functional form of LRA with polynomial bases. As in the
case of PCE, the computational cost of the LRA-based Sobol' indices
reduces to the cost of estimating the coefficients of the meta-
model. Once a LRA meta-model of the response quantity of in-
terest is available, the Sobol' indices can be calculated with ele-
mentary operations at nearly zero additional computational cost.

The paper is organized as follows: In Section 2, we review the

basic concepts of Sobol' sensitivity analysis and define the corre-
sponding sensitivity indices. In Section 3, we describe the math-
ematical setup of non-intrusive meta-modeling and define error
measures that characterize the meta-model accuracy. After re-
viewing the computation of Sobol' indices using PCE meta-models
in Section 4, we introduce the LRA-based approach in Section 5. In
this, we first detail a greedy algorithm for the construction of LRA
in a non-intrusive manner and then, use their general functional
form to derive analytical expressions for the Sobol' indices. In
Section 6, we demonstrate the accuracy of the proposed method
by comparing the LRA-based indices to reference ones, with the
latter representing the exact solution or Monte-Carlo estimates
relying on a large sample of responses of the actual model. Fur-
thermore, we examine the comparative performance of the LRA-
and PCE-based approaches in example applications that involve
analytical rank-one functions and finite-element models pertinent
to structural mechanics and heat conduction. The main findings
are summarized in Section 7.

2. Sobol' sensitivity analysis

We consider a computational model describing the behavior
of a physical or engineered system of interest. Let = { … }X X X, , M1

denote the M-dimensional input random vector of the model with
prescribed joint PDF fX . Due to the input uncertainties embodied
in X , the model response becomes random. By limiting our focus
to a scalar response quantity Y, the computational model re-
presents the map:

∈ ⊂ ⟼ = ( ) ∈ ( ) X XY , 1X
M

where X denotes the support of X .
Sobol' sensitivity analysis aims at apportioning the uncertainty

in Y, described by its variance, to contributions arising from the
uncertainty in individual input variables and their interactions. As
explained in the Introduction, the theoretical framework described
in the sequel is confined to the case when the components of X
are independent. Under this assumption, the joint PDF fX is the
product of the marginal PDF fXi

of each input parameter.

2.1. Sobol' decomposition

Assuming that is a square-integrable function with respect
to the probability measure associated with fX , its Sobol' decom-
position in summands of increasing dimension is given by [6]:
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where = { … }i iu , , s1 , ≤ ≤s M1 , denotes a subset of { … }M1, , and
= { … }X X X, ,i iu s1 is the subvector of X containing the variables of

which the indices comprise u.
The uniqueness of the decomposition is ensured by choosing

summands that satisfy the conditions:

= ( ) ( )⎡⎣ ⎤⎦ X 30

and

( ) ( ) = ∀ ⊂ { … } ≠ ( )⎡⎣ ⎤⎦ X X Mu v u v0 , 1, , , . 4u u v v

Note that the above condition implies that all summands
{ ≠ ∅}u,u in Eq. (2) have zero mean values. A recursive con-
struction of summands satisfying the above conditions is obtained
as:
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