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a b s t r a c t

The availability of condition monitoring data for large fleets of similar equipment motivates the devel-
opment of data-driven prognostic approaches that capitalize on the information contained in such data
to estimate equipment Remaining Useful Life (RUL). A main difficulty is that the fleet of equipment
typically experiences different operating conditions, which influence both the condition monitoring data
and the degradation processes that physically determine the RUL. We propose an approach for RUL
estimation from heterogeneous fleet data based on three phases: firstly, the degradation levels (states) of
an homogeneous discrete-time finite-state semi-markov model are identified by resorting to an un-
supervised ensemble clustering approach. Then, the parameters of the discrete Weibull distributions
describing the transitions among the states and their uncertainties are inferred by resorting to the
Maximum Likelihood Estimation (MLE) method and to the Fisher Information Matrix (FIM), respectively.
Finally, the inferred degradation model is used to estimate the RUL of fleet equipment by direct Monte
Carlo (MC) simulation. The proposed approach is applied to two case studies regarding heterogeneous
fleets of aluminium electrolytic capacitors and turbofan engines. Results show the effectiveness of the
proposed approach in predicting the RUL and its superiority compared to a fuzzy similarity-based ap-
proach of literature.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Prognostics of failures aims at forecasting the Remaining Useful
Life (RUL) of an equipment, i.e., the amount of time the equipment
can continue performing its functions under its design specifica-
tions [1–4]. Knowledge of the RUL would allow avoiding system
unscheduled shutdowns by defining efficient maintenance stra-
tegies that exploit the full RUL for operation. This would increase
the system availability and safety, while reducing maintenance
costs [2,4,5]. For these attractive reasons, there is an increasing
interest of industry for failure prognostics [3,6,7].

Approaches for RUL estimation can be generally categorized
into model-based and data-driven [2,8–13]. Model-based ap-
proaches use physics models to describe the degradation beha-
viour of the equipment [4,9,14,15]. For example, Li et al. [16,17],
have proposed two prediction models of defect propagation in
bearings; Oppenheimer et al. [18], have modelled a rotor shaft
crack growth using the Forman law of linear elastic fracture me-
chanics and used the model for predicting its health condition and,

correspondingly, estimating its RUL; Di Maio et al. [19], have ex-
plored the combination of exponential regression and Relevance
Vector Machines (RVMs) for estimating the RUL of partially de-
graded thrust ball bearings; Cadini et al. [20], have used Particle
Filtering (PF) for estimating the RUL of equipment subject to fa-
tigue crack growth; modelled by Paris-Erdogan law [21], and for
defining the optimal policy of condition-based equipment re-
placement. Despite the fact that these approaches lead to accurate
prognostics results, uncertainty arising due to the assumptions
and simplifications of the adopted models may pose limitations on
their practical deployment [3,9,22–24].

Contrarily, data-driven prognostics approaches do not use any
explicit physical model, but rely exclusively on the availability of
process data related to equipment health to build (black-box)
models that capture the degradation and failure modes of the
equipment [4,23]. For example, Di Maio et al. [22], have introduced
a data-driven fuzzy similarity-based prognostics approach for es-
timating the RUL of equipment subject to fatigue cycles; Recurrent
Neural Networks (RNNs) [25], Neuro-Fuzzy (NF) systems [26] and
Support Vector Machines (SVMs) [27] have also been used for
prognostics, with success. In spite of the recognized potential of
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these data-driven approaches, challenges still exist for their
practical applications [4,22]:

1) to build accurate models, data-driven approaches require suf-
ficiently representative run-to-failure data (i.e., time series data
up to the threshold value beyond which the equipment loses its
functionality) which, in some practical cases, might be ex-
pensive or impractical to obtain; for this reason, data-driven
approaches are more commonly applied for equipment of re-
latively short life than for safety-critical and slow-degrading
equipment, for which complete run-to-failure trajectories are
rarely available [4,28];

2) these approaches are computationally intense [4];
3) with these models it is difficult to provide a measure of con-

fidence on the RUL predictions, i.e., the uncertainty affecting the
predictions [22,29];

4) these approaches do not provide a clear physical interpretation
of the current degradation condition of the equipment under
observation, i.e., they behave like black-boxes [30].

To overcome these challenges, it seems worthwhile to consider
and make use of the knowledge and data coming from similar
equipment, forming what in the industrial context is called a fleet
[6,31], rather than relying solely on the knowledge and data
coming from a single equipment. This will improve our knowledge
concerning the equipment behaviour, reduce prognostics un-
certainty and, thus, improve the efficiency of the fault prognostics
task. A fleet of P pieces of equipment might:

1) have identical technical features and usage, and work in the
same operating conditions, thus forming an identical fleet, e.g.,
a fleet of identical diesel engines located in one ship [6];
knowledge derived from a fleet of this nature has been used
for defining thresholds for anomaly detection [32] and for
diagnosing faults [33] of equipment identical to the fleet
members;

2) share some technical features and work in similar operating
conditions, but show differences either on some features or on
their usage, forming a so-called homogenous fleet, e.g., a fleet of
trains working over a common route [34]; knowledge derived
from this type of fleet has been used for developing diagnostics
approaches for enhancing maintenance planning [34];

3) have different and/or similar technical features, but undergo
different usage with different operating conditions, forming a
so-called heterogeneous fleet, e.g., a fleet of highly standardized
steam turbines of pressurized water reactors nuclear power
plants [35]; this type of fleet can provide wider knowledge
concerning the equipment behaviour [6,31,36].

The variability of behaviour of the members of the different
types of industrial fleet above mentioned gives rise to a variability
in a population of elements, in mathematical terms.

Most of the existing fleet-wide approaches for failure prog-
nostics treat only the information gathered from identical and/or
the homogenous fleets rather than from heterogeneous ones [14].

The objective of the present work is to develop a data-driven

Nomenclature

RUL Remaining Useful Life
RNNs Recurrent Neural Networks
RVMs Relevance Vector Machines
PF Particle Filtering
SVMs Support Vector Machines
NF Neuro-Fuzzy
HDTFSSMM Homogeneous Discrete-Time Finite-State Semi-

Markov Model
MLE Maximum Likelihood Estimation
FIM Fisher Information Matrix
MC Monte Carlo simulation
Nmax Number of Monte Carlo simulation trials
FCM Fuzzy C-Means
CSPA Cluster-based Similarity Partitioning Algorithm
P Number of equipment in the fleet
Ptraining Number of equipment used for training
Ptraining

c Number of complete-run-to-failure trajectories used
for training

Ptraining
ic Number of incomplete-run-to-failure trajectories

(right-censored) used for training
Ptest Number of equipment used for testing
p Index of equipment, = …p P1, , training and/or Ptest

θ β={ }q, Parameters of the discrete Weibull distribution
θ β^={^ ^}q , Estimated parameters of the discrete Weibull

distribution
H Number of base clusterings
j Index of base clustering
Copt

j Optimum number of clusters of the j-th base
clustering

PPI Prognostic Performance Indicator
S Number of degradation states (final consensus clus-

ters) of equipment

Sfinal Number of degradation states including the failure
state of equipment

i Index of degradation state, = …i S1, , final

̿X Dataset matrix of the collected measurements
Ccandidate Possible number of clusters in the final consensus

clusteringS, ∈[ ]C C C,candidate min max

RMSE Root Mean Square Error for prognostics
AI Accuracy Index for prognostics
α λ− accuracy α λ( − ) accuracy index for prognostics
PI Precision Index for prognostics
CR Coverage Rate for prognostics

( )RUL tp l True RUL of p-th equipment at the measurement time
tl

( )RUL tp l Estimated RUL of p-th equipment at the measurement
time tl

Ip Number of measurements of p-th equipment
Z Number of signals of each degradation trajectory
z Index of signal

( )tl
p Index of the measurement time of p-th equipment,

= …l I1, , p

M Number of discrete time steps between two successive
measurements

ESRmeasured Measurements of the degradation indicator
T Temperature profiles experienced by the capacitors
ESRnorm Capacitors degradation indicator
DB Davies-Bouldin criteria
ct

p
l

Coverage value of p-th equipment at the measure-
ment time tl

( )α λ−
λt

p α λ( − ) value of p-th equipment at the measurement
time λt

wt
p
l

Width value of p-th equipment at the measurement
time tl

mp The monotonicity of the p-th degradation trajectory,
= …p P1, , training
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