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a b s t r a c t

This study presents a new Reliability-based Design Optimization method using adaptive response surface
and first-order score function analysis for complex system design optimization considering the varia-
bility of design variables. The adaptive response surface using Bayesian metric and Gaussian process
based model bias correction method, is developed to represent the true performance functions and
replace the true limit state function. First-order score function analysis is exploited to compute the
sensitivities of probabilistic responses with respect to the design variables, which are the mean values of
the random variables. Numerical results indicate that the proposed methods can produce the best re-
sponse surface and estimate the sensitivities of probabilistic responses accurately. The proposed meth-
odology is demonstrated by a vehicle crashworthiness design optimization problem with full frontal and
offset frontal impacts.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reliability-based design optimization (RBDO) has gained more
attention recently. It has been widely applied to various en-
gineering design problems to consider the variabilities of design
variables [1–6]. The commonly used RBDO methods can be clas-
sified into two categories: One is the most probable point (MPP)-
based methods such as first-order reliability method (FORM),
second-order reliability method (SORM), reliability index ap-
proach (RIA) and performance measure approach (PMA) etc.,
where the accurate sensitivities of performance function are re-
quired in complex engineering systems [7–11]. In the literature,
MPP-based reliability design optimization is commonly used but it
has some challenges, e.g., it may be unable to find an MPP. It also
has difficulty to find and deal with problems which have multiple
MPPs. The other is sampling-based methods which estimate the
probability of failure and the sensitivities of performance function
with selected samples by using sampling methods such as Monte
Carlo simulation (MCS). For the former, the sensitivities of per-
formance function are often required among the MPP-based
methods [7]. For the latter, the sampling-based RBDO method by
using MCS is general for obtaining the reliability of a complex
system. However, in most practical engineering systems, the
sensitivities of performance function are either unavailable or

extremely difficult to obtain, since it is computation intensive for
large-scale systems, especially for vehicle crashworthiness design.
To reduce the computational expense for obtaining accurate re-
sponse of performance function, the response surface-based RBDO
becomes a common tool in practical engineering applications.

One of the major deficiencies of using the response surface in
design optimization is its poor accuracy it may often encounter. In
essence, the response surface is a simplified representation of a
complex physical phenomenon. It ignores the data uncertainty,
which may result from high non-linearity of the response of im-
pact problem, imperfection of the numerical simulation and un-
certainties in simulation [12–14]. As a result, the selection of re-
sponse surface based on conventional metric calculated at sam-
pling points, e.g., mean square error (MSE) etc., may not provide
sufficient information on the evaluation of the accuracy of a re-
sponse surface for the use in design optimization problems [15]. In
this context, Yang et al. [16] and Gu et al. [17] recommended the
use of second order polynomial regression and moving least
square regression, respectively. Kurtaran et al. [18] suggested the
successive response surface approximation, and Fang et al. [19]
recommended the use of radial basis function. Although each re-
sponse surface has its advantages, there is no common agreement
on which model is the best. Shi et al. [20] proposed a Bayesian
metric to help selecting the best available response surface in a
model library considering data uncertainty. It is used as a measure
to estimate the quality of a response surface in the presence of
data uncertainty. The response surface with larger value of Baye-
sian metric implies that it is the most probable model in view of
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the same data and all known prior information. This metric proved
to be a useful means to select the most likely response surface for
engineering application with prior data uncertainty. However, the
question of how to determine the prior information, i.e., data
uncertainty, is not addressed. In addition, although Bayesian me-
tric is effective to select the most probable response surface
among candidates, the accuracy of the response surface may still
depend on the availability of the response surfaces.

To address the data uncertainty and the accuracy problems, a
Gaussian Process (GP) based model bias correction method is
employed to quantify data uncertainty and also to improve its
predictive capability. The GP for model bias correction is first used
to address this issue of quantification of data uncertainty, and the
Bayesian metric is utilized to select the most probable response
surface. After that, the accuracy of the response surface is further
improved by using the bias correction function. One interpretation
of the model bias correction approach is that it captures the po-
tential model error due to the use of incorrect modeling method,
which often cannot be compensated by other means. It attempts to
correct for any inadequacy of the model which is revealed by a
discrepancy between the observed data and the model predictions
from even the best-fitting parameter values [21].

Furthermore, in sampling-based RBDO method respect, MCS
can be easily incorporated with response surface for calculating
the sensitivities of reliability of complex systems for RBDO pro-
blems. However, even if an accurate response surface is available,
the sensitivities of reliability obtained from the finite difference
method (FDM) may be inaccurate as a noisy response is con-
sidered [22]. Using MCS method to calculate the sensitivities of
probabilistic responses obtained by FDM is very time consuming if
not impossible.

In this paper, the GP for model bias correction is first used to
address this issue of quantification of data uncertainty, and the
Bayesian metric is utilized to select the most probable response
surface. The accuracy of the response surface is further improved
by using the bias correction function. In addition, first-order score
function is exploited to calculate the sensitivities of probabilistic
response with respect to the design variables, which are the mean
values of the random variables, to solve RBDO problem. The major
advantage is that the sensitivity is computed analytically by taking
derivatives of the probability density function, there is no ap-
proximation to calculate the sensitivities of the probabilistic
responses.

The remainder of this paper is organized as follows: Section 2.1
briefly reviews the theory of RBDO. Section 2.2 proposes an

adaptive response surface method by Bayesian metric and model
bias correction and illustrates it with an analytical example, and
followed by first-order score function for calculating sensitivities
of probabilistic response in Section 2.3. A vehicle example with
full-frontal and offset-frontal impacts is used to demonstrate the
proposed methodology in Section 3. The summary is given in the
end.

2. A new RBDO methodology

2.1. RBDO formulation

A typical RBDO problem, which involves probabilistic con-
straints, is generally formulated as:
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where F and Gj are the objective and constraint functions, re-
spectively, d is the vector of design variables, X is the vector of
design variables, PF

tar
j

is the target probability of failure for jth

constraint, and nc , ndv, and n are the number of probabilistic
constraints, design variables, and random variables, respectively.
Note that the design variables X involves deterministic design
variables and random design variables. To be more straightfor-
ward, X is only denoted as random design variables in this paper.
The reliability is defined as 1- PF , where PF is the probability of
failure obtained by taking the expectation of an indicator function
[23]:
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liability analysis, θ is a vector of distribution parameters, θ( )f x;X is
a joint probability density function of X , θE is the expectation
operator, and ( )ΩI xF is an indicator function expressed as:
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where Ω is the design space.
The RBDO problem in (1) has been addressed extensively in the

literature. Among those, Most Probable Point (MPP) has gained
most attention in recent years [2–4]. In this research, instead,

Nomenclature

RBDO Reliability-based Design Optimization
GP Gaussian Process
SSR Subset Selection Regression
RBF Radial Basis Function
RBF-GP Radial Basis Function with Gaussian basic function
RBF-MQ Radial Basis Function with Multiquadric basic function
DOE Design of Experiment
RMSE Root Mean Square Error
N Number of design variable
I Any prior information

(•)prob Probability measure
m Number of model parameters
N Sample size
a Parameter of response surface A
â Parameter space of response surface A

σ Data uncertainty
ε Random gaussian noise
K Matrix of Bayesian metric
Ki,j Element of matrix K
In Q Bayesian metric

( )y xm Computer model (or response surface)
( )y xe Physical observations (or high-fidelity model)

δ ( )x Bias correction function
ε Experimental error of the physical observation
Δ( )x Updated bias correction function

( )y x Actual response
( )h xT Vector of the mean function of a GP model

β Regression coefficients for the mean function of a GP
α2 Constant variance of the GP model

( ′)R x x, Correlation function of the responses at points x and x′
ω Vector of roughness parameters
MLE Maximum likelihood estimates
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