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a b s t r a c t

Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as
Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory
storage required to construct the BN model, and an updating algorithm that performs inference on
compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for
system reliability assessment, namely the exponentially increasing amount of information that needs to
be stored as the number of components in the system increases. The proposed compression and in-
ference algorithms are described and applied to example systems to investigate their performance
compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement
are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger in-
frastructure systems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Infrastructure systems are essential for a functioning society,
from distributing the water we drink, to delivering the electricity
we consume, to enabling transport of people and goods from
source to destination points. Our nation's infrastructure, however,
is aging and becoming increasingly unreliable with potentially
severe consequences. Given a complex infrastructure network
comprised of many interconnected components, system reliability
analysis is required to identify the critical components and make
decisions regarding inspection, repair, and replacement to mini-
mize the risk of system failure.

The Bayesian network (BN) is a useful probabilistic tool for
system reliability assessment. It is a graphical tool that offers a
transparent modeling scheme, allowing easy checking of the
model even by non-experts in systems analysis and probabilistic
methods. In an environment where information about a system is
evolving in time and is subject to uncertainty, BNs are able to
update the reliability state of the system as new information, e.g.,
from observations, inspections, or repair actions, becomes avail-
able. Infrastructure systems are subject to high degrees of un-
certainty, including discrepancies between initial design and

construction, uncertain degradation of system components over
time, and exposure to stochastic hazards. BNs provide the proper
probabilistic framework to handle such information for engineer-
ing decision making.

A major obstacle to widespread use of BNs for system reliability
assessment, however, is the limited size of the system that can be
tractably modeled as a BN. This is due to the exponentially in-
creasing amount of information that needs to be stored as the
number of components in the system increases. This paper pro-
poses a method to address this limitation.

The main contributions of this paper are novel compression
and inference algorithms that enable the modeling of larger
systems as BNs than has been previously possible. The paper is
organized as follows: Section 2 provides a brief background on
BNs, including the advantages of using BNs for system reliability
analysis and the current limitations in BN modeling of large
systems. Section 3 introduces the proposed compression algo-
rithm for constructing and storing the conditional probability
tables (CPTs) required by the BN. Section 4 describes the in-
ference algorithm for system reliability analysis, which uses the
compressed CPTs without decompressing them. Section 5 de-
monstrates the proposed algorithms through application to a test
system. Results for memory storage and computation time are
presented.
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2. Background

2.1. Methods for system reliability assessment, including Bayesian
networks (BNs)

Over the years, many methods have been developed to assess
system reliability. While not intended to be an exhaustive list,
these include reliability block diagrams (RBDs), fault trees (FTs),
event trees (ETs), binary decision diagrams (BDDs), and Bayesian
networks (BNs). RBDs, FTs, and ETs are symbolic models showing
the logical relationships between component states and system
outcomes. These can be extended into BDDs, graphical models
representing Boolean relationships between variables. General
relationships between random variables can be modeled graphi-
cally using BNs.

RBDs are useful to show the components of a system and their
relationships; however, they are not efficient for reliability analysis
of complex infrastructure systems [17,20]. FTs have been used ex-
tensively in the nuclear industry [33]. They are constructed for a
particular undesired system outcome; hence, a single FT cannot
model all possible modes or causes of system failure [4]. ETs trace
forward through a causal chain to assess the probability of occur-
rence of different system outcomes. The size of an event tree,
however, can grow exponentially with the number of sequential
events [22]. BDDs are useful for modeling Boolean functions, as they
occur in system reliability analysis [1,7]. The number of nodes and
paths in a BDD is exponential with the number of variables in the
domain of the Boolean function [19]. For reliability analysis of an
infrastructure system, this implies a BDD of exponentially increas-
ing size as the number of components in the system increases.

A Bayesian network (BN) is a graphical model comprised of
nodes and links. Each node represents a random variable and each
link describes the probabilistic dependency between two variables.
Each BN node is assigned a set of mutually exclusive and collectively
exhaustive states. In our application, the nodes represent the states
of the system components and the overall system performance, and
the links describe the probabilistic dependencies between compo-
nent and system performance. The reader is referred to texts such
as [13] for further information on BNs.

As stated earlier, the capability of BNs for updating and hand-
ling of uncertain information and their graphical modeling re-
presentation makes them particularly well suited for reliability
assessment of infrastructure systems under evolving states of in-
formation [30]. There are both exact and approximate methods for
inference in BNs. These methods are applicable given a BN struc-
ture, to update probability assessments over the network in light
of new information. For the case where system topology changes,
as can occur in post-disaster scenarios, first a restructuring of the
BN, then performing inference over the new BN is necessary. Ap-
proximate inference methods are generally sampling based, in-
cluding importance sampling [23,35] and Markov chain Monte
Carlo [11]. In theory, these methods converge to the exact solution
for a sufficiently large number of samples. In practice, however,
the rate of convergence is unknown and can be slow [27]. This is
especially true when simulating events that are a priori unlikely.
Exact inference methods are, therefore, preferred. The algorithm
described in Section 4 is for exact inference.

2.2. Current limitations in BN modeling of large systems

The use of BNs for system reliability assessment has been
limited by the size and complexity of the system that can be
tractably modeled. Systems analyzed in previous studies have
been small, typically comprised of 5–10 components. This includes
studies on generating BNs from conventional system modeling
methods, e.g., RBDs [14,32] and FTs [5]. Mahadevan et al. [16]

demonstrate the ability of the BN to use system-level test data to
update information at the component level. They note that the
computational effort increases significantly with the number of
system components. They introduce an approach characterized as
“branch and bound,” whereby events of relatively low probability
are ignored, to apply the BN to larger systems. The example given,
however, is for a system consisting of only 8 components, and the
willful discarding of available information, leading to a subsequent
loss of accuracy in the result, is not ideal.

Boudali and Dugan [6] use BNs to model the reliability of
slightly larger systems, including a system of 16 components.
However, the authors state that this “large number” of components
makes it “practically impossible” to solve the network without
resorting to simplifying assumptions or approximations. Clearly,
even a system of 16 components is not enough to create a full
model of many real-world infrastructures. Nielsen et al. [19] pro-
pose a method utilizing Reduced Ordered Binary Decision Dia-
grams (ROBDDs) to efficiently perform inference in BNs re-
presenting large systems with binary components. However, a
troubleshooting model is considered, which includes a major as-
sumption of single-fault failures, i.e., the malfunction of exactly
one component causes the system to be at fault. In general, the
number of paths in the ROBDD is exponentially increasing with
the number of components. It is the single-fault assumption that
bounds the size of the ROBDD. For general systems, including in-
frastructure systems, this single-fault assumption cannot be
guaranteed. Therefore, the gains from using the ROBDD may not
be applicable.

Finally, a topology optimization algorithm is proposed in Bensi
et al. [3] to address the inefficiency of a converging BN structure as
shown in Fig. 1. The authors develop a discrete optimization pro-
gram to create a more efficient, chain-like BN model of the system
based on survival- or failure-path sequences. The proposed opti-
mization program, however, must consider the permutation of all
component indices and, therefore, may become intractably large
for large systems.

2.3. Conditional probability tables in construction of BN

The system size limitation arises due to the conditional prob-
ability tables (CPTs) that must be associated with each node in the
BN. In the BN terminology, the CPT of a child node provides the
probability mass function of the variable represented by that node
given each of the mutually exclusive combinations of the states of
the parent nodes. For an infrastructure system, the state of the
system is dependent on the states of each of its constituent
components, as shown in Fig. 1. The BN can include parent nodes
of the components, as indicated by the dashed arrows, re-
presenting common hazards, characteristics, or demands among
components. The focus of this study is on the system description

Fig. 1. BN of a system comprised of n components.
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