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a b s t r a c t

The nonlinear response of an oscillatory bubble in a complex fluid is studied. The bubble is
immersed in a Newtonian liquid, which may have a dilute volume fraction of anisotropic
additives such as fibers or few ppm of macromolecules. The constitutive equation for the
fluid is based on a Maxwell model with an extensional viscosity for the viscous contribu-
tion. The model is considered new in the study of bubble dynamics in complex fluids. The
numerical computation solves a system of three first order ordinary differential equations,
including the one associated with the solution of the convolution integral, using a fifth
order Runge–Kutta scheme with appropriated time steps. Asymptotic solutions of govern-
ing equation are developed for small values of the pressure forcing amplitude and for small
values of the elastic parameter. A study of the bubble collapse radius is also presented. We
compare the results predicted by our model with other model in the literature and a good
agreement is observed. The calculated asymptotic solutions are also used to test the results
of the numerical simulations. In addition, the orientation of the additives is considered. The
angular probability density function is assumed to be a normal distribution. The results
show that the model based on the fully aligned additives with the radial direction overes-
timates the tendency of the additives to stabilize the bubble motion, since the effect of
extensional viscosity occurs due to the particle resistance to the movement throughout
its longitudinal direction.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

A single bubble behaves like a non-linear oscillator when immersed in a fluid undergoing external acoustic pressure field.
Bubble dynamics has been a subject of several studies in different areas. For instance, in sonochemistry [1], in protein folding
[2] or in the biomedical fields [3]: the ultrasound-induced cavitation is used for safe and efficient drug delivery, as well as for
chemotherapy treatment [4,5]. Cavitation is also used to induce comminution of kidney stones [6]. The dynamical response
of a spherical oscillating bubble in a Newtonian media largely appears in literature, nevertheless its behavior when im-
mersed in a non-Newtonian fluid is far from complete. Ting [7] and Chahine and Fruman [8] observed that a fluid composed
by polymer solution can reduce the collapse phenomenon. The non-Newtonian properties of the fluid may therefore contrib-
ute to the reduction of noise and cavitation damage as observed by Brujan [9]. Although different models on viscoelastic flu-
ids have been recently used to explore bubble oscillations [10–12], even under the effect of a magnetic field [30] the
influence of rheological properties of the host fluid, such as the fluid elasticity, still leaves open questions.

We propose a study of a spherical oscillating bubble immersed in a viscoelastic fluid. In this work, the ambient fluid is
characterized as a substance composed of a Newtonian liquid and a dilute volume fraction of additives as long fibers or
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few ppm of macromolecules. As in a previous work by the authors [13], a Maxwell model with extensional viscosity has been
also used for describing the constitutive equation for the fluid, which involves a convolution or memory integral. The model
assumes a system with three non-linear first order equations, including an ordinary differential equation for the convolution
integral, obtained by a similar procedure commonly used for different flows involving non-Newtonian fluid with memory
[14]. For a more realistic description of the bubble dynamics, we take now into consideration the orientation of the additives.
The average of the additives orientation is denoted as a constant S0 and is defined in terms of the angular probability density
function, assumed to be a normal distribution. For S0 ¼ 1, the additives are fully aligned additives with the radial direction,
whereas S0 ffi 0:1 gives an orientation condition perpendicular to the radial direction. The results show that fully oriented
particles (S0 ¼ 1) as considered in [13] overestimates the tendency of the additives to stabilize the bubble motion, since
the effect of extensional viscosity occurs due to the particle resistance to the movement throughout its longitudinal direc-
tion. The numerical method for solving the equations is explained in details, which includes the code validation and the per-
turbation method for the governing equation in terms of the pressure amplitude. We show a study to predict the bubble
collapse radius, where an asymptotic theory for the bubble minimum radius is proposed. In addition, an asymptotic solution
of the bubble dynamics for small values of the Deborah number (i.e. the elastic parameter) is also presented.

2. Mathematical formulation

Consider a spherical bubble immersed in a Newtonian incompressible fluid of viscosity l and density q. The ambient fluid
contains a volume fraction of anisotropic particles of length ‘ and diameter a, which present a high aspect ratio, ‘=a� 1. The
inner side of the bubble is composed by a mixture of contaminant gas (which develops a polytropic process) and liquid va-
por. This mixture acts like an energy cushion of the liquid while the bubble contracts. We assume that the bubble develops
only radial motions due to superficial tension, simplifying our analysis to an unidimensional motion, maintaining its spher-
ical shape. Therefore, factors like pressure gradients in the liquid, presence of gravitational field or surfactants are neglected.
Although some studies deal with mass transfer in the liquid–gas interface of an oscillating bubble (e.g. [15]), it is not con-
sidered in the present work as it has relevant dynamical effects at very low ambient pressure and for great portion of vapor
in the mixture inside the bubble [16]. Furthermore, if one takes into account mass flux, the non-sphericity [17] would also be
an important factor as a nonuniform dynamic surface stress arises from the motion [18]. The pressure inside the bubble is
supposed to be spatially uniform and non-equilibrium effects in the collapse instant are not taken into account. Heat con-
duction through the bubble interface may influence the bubble dynamics very strongly [19]. However, for an equilibrium
vapor density relatively small the isothermal process here adopted is valid [20].

2.1. Governing equations and boundary conditions

The general governing equations for the motion of an incompressible fluid are given by the continuity equation and the
momentum equation, as follows

r � u ¼ 0; ð1Þ

q
@u
@t
þ u � ru

� �
¼ r � R; ð2Þ

where R ¼ �pIþ 2lDþ r is the bulk stress tensor for a statistically homogeneous suspension, written in terms of the pres-
sure field p, the identity tensor I, the rate of strain tensor D ¼ 1=2ðruþ ðruÞTÞ and the extra stress tensor due to the pres-
ence of additives, r. The term u is the Eulerian velocity field. We assume that the bubble develops only radial motions due to
surface tension (i.e. clean bubble), simplifying our analysis to an unidimensional motion, maintaining its spherical shape. In
particular, the examined unsteady one-dimensional flow involving inertia and a nonlinear complex liquid is characterized by
a strong nonlinear dynamics.

The boundary conditions on the bubble surface are specified as following. Consider fluid 1 in the bubble side and fluid 2 in
the complex liquid side. The interface between the fluids is S and n is its unit normal vector. The interfacial tension coeffi-
cient is denoted by r̂. First, the velocity is continuous at the surface S, i.e.

u1 ¼ u2 on S: ð3Þ

However, the stress is not continuous on the interface and, in general on S, the traction is given by

n � kR2 � R1k ¼ Df; ð4Þ

where the traction is expressed as a sum of a normal and tangential components

Df ¼ ðn � DfÞnþ ðI� nnÞ � Df; ð5Þ

on the surface S. Defining Is ¼ ðI� nnÞ as being the identity surface unity tensor, we can write Df ¼ nDf n þ Is � Df. In this
work, the constitutive equation for the bubble interface given by Df assumes an isotropic membrane described by the fol-
lowing stress tensor [21].
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