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a b s t r a c t

In this paper we discuss the static snapping load of a hinged buckled beam subject to a
midpoint force. Three different models are compared; they are small-deformation theory,
inextensible elastica, and extensible elastica. As expected, small-deformation theory fails
to predict the static snapping load accurately in the large-deformation range. In the
small-deformation range, on the other hand, inextensible elastica model predicts the static
snapping load poorly. Finally, by allowing the elastica to be extensible, it is observed
that one can predict the static snapping load accurately both in the small- and large-
deformation ranges.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

An initially straight beam can be buckled into a curved shape by edge thrust. If both ends of the buckled beam are hinged
in space, it becomes a natural bistable device. When the buckled beam is loaded laterally, the buckled beam may jump from
one side to the other suddenly. This phenomenon is called snap-through buckling, which has wide applications in the design
of bistable devices.

One of the goals of buckled beam research is to find the critical lateral load which initiates snap-through buckling. Two
mathematical modeling methods are available in the current literature in this regard. In the first approach, small deforma-
tion is assumed and axial extensibility of the beam is permitted [1–6]. In this category, the snapping load may be obtained in
closed form. In the second category, an elastica model taking into account exact geometry is adopted in the analysis of the
deformation [7–10]. In this category, the beam is usually assumed to be inextensible. No closed-form snapping load is avail-
able in this approach. However, the restriction of small deformation is lifted.

One of the advantages of conventional elastica approach over small-deformation theory is that it can predict the snapping
load even when the deformation of the buckled beam is large. However, the inextensible elastica model has its own problem,
especially when the deformation is small. It will be shown in this paper that in the small-deformation range, the small-
deformation theory works better than inextensible elastica theory. This stems from the fact that in conventional elastica the-
ory the beam is assumed to be inextensible. In the small-deformation theory, on the other hand, the beam is allowed to be
extensible, which is of course closer to the fact. In an effort to fix this defect of the conventional elastica theory, we propose
in this paper to use extensible elastica to derive the snapping load of a buckled beam.

In 1972 Reissner [11] derived the equilibrium and strain–displacement equations for an extensible and shear-deformable
planar elastica by using virtual work principle. Magnussen et al. [12] studied the buckling of an axially loaded beam and re-
ported that the bifurcation point may change from supercritical (which is always the case for inextensible elastica) to sub-
critical when extensibility is considered in certain situations. The theory of extensible elastica has also been incorporated
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into finite element formulations [13,14]. Irschik and Gerstmayr [15] used continuum mechanics approach to formulate the
equilibrium equations for an extensible, non-shear-deformable, and initially straight elastica. Humer and Irschik [16] studied
the deformation of an extensible elastica resting between two spatially fixed supports with one end completely fixed and the
other allowed to slide in the support after external load is applied.

In this paper we study the static snapping load of a hinged buckled beam under a midpoint force. The results from the
three approaches, i.e., small-deformation theory, inextensible elastica, and extensible elastica, are compared. It will be
shown that the extensible elastica theory not only can predict the snapping load accurately when the deformation is large,
it can also produce consistent result in the small-deformation range.

2. Governing equations of an extensible elastica

We consider a uniform beam with total length L before deformation. The flexural rigidity of the elastic beam is EI. E is the
Young’s modulus and I is the area moment of inertia of the cross section. The effect of shear deformation is ignored. The elas-
tic beam is straight initially when it is stress free. We assume that the beam is compressed by an axial force at the ends and
buckles with the two ends being brought closer by a distance e�. After this deformation, both ends O and B of the buckled
beam are hinged in space, as shown in Fig. 1. The two dashed curves in Fig. 1 represent the two possible shapes of the buck-
led beam before any lateral load is applied. We fix an x� y�-coordinate system with its origin at point O. The buckled beam
(elastica) is loaded at the midpoint s� ¼ L=2 by a point force Q � pointing in the negative y� -direction. s� is the length of the
undeformed beam measured from point O. The buckled beam may deform symmetrically or unsymmetrically. The solid
curve in Fig. 1 represents the loaded beam when it deforms unsymmetrically under midpoint force Q �. For a small element
ds�, one can write the geometrical relations [11],

@x�ðs�Þ
@s�

¼ ½1þ eðs�Þ� cos hðs�Þ; ð1Þ

@y�ðs�Þ
@s�

¼ ½1þ eðs�Þ� sin hðs�Þ: ð2Þ

hðs�Þ is the rotation angle of the neutral axis at s�. e (s�) is the relative change of length of the element ds�,

eðs�Þ ¼ 1
EA
½F�xðs�Þ cos hðs�Þ þ F�yðs�Þ sin hðs�Þ�: ð3Þ

F�xðs�Þ and F�yðs�Þ are the internal forces in the x�- and y�-directions. The balance of moment can be written as

@M�ðs�Þ
@s�

¼ ½1þ eðs�Þ�½F�xðs�Þ sin hðs�Þ � F�yðs�Þ cos hðs�Þ�: ð4Þ

M�ðs�Þ is the bending moment. It is assumed that the cross section of the beam remains plane and normal to the neutral axis
after deformation. Shear deformation on the cross section plane is ignored. In other words, Euler–Bernoulli beam model is
assumed. The relation between curvature and bending moment can be written as

@hðs�Þ
@s�

¼ M�ðs�Þ
EI

: ð5Þ

Fig. 1. A hinged buckled beam subject to a midpoint force.

8402 J.-S. Chen, H.-W. Tsao / Applied Mathematical Modelling 37 (2013) 8401–8408



Download	English	Version:

https://daneshyari.com/en/article/8052927

Download	Persian	Version:

https://daneshyari.com/article/8052927

Daneshyari.com

https://daneshyari.com/en/article/8052927
https://daneshyari.com/article/8052927
https://daneshyari.com/

