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a b s t r a c t

Pollutants that are chemically inert flow with the carrier fluid passively while diffuse at the same time.
In this study, the stochastic diffusion behavior of the passive pollutant in a progressive or standing wave
field is examinedwith analytical means. Our focus is on the nonlinear interactions between the stochastic
diffusion and the deterministic wavemotions, andwe limit the scope to caseswhereby a small parameter,
ε, exists between the advective and diffusive displacements, which then allows a perturbation analysis to
be performed. With a sinusoidal progressive wave, the results show that the deterministic wave motion
can either increase or decrease the embedded stochastic diffusion depending on the wave characteristics.
Longerwave lengths and shorterwave periods tend to promote diffusion significantly, while shorterwave
lengths and longer wave periods act in the opposite manner but with a much smaller effect. An analysis
of the standing wave motion, represented by a combination of left and right moving progressive waves,
shows that the effects due to two opposing waves to the stochastic diffusion can be superimposed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Pollutants that are chemically inert flow with the carrier fluid
passively while diffuse at the same time. Over the years, a good
level of understanding has been accumulated on the transport
of these passive pollutants in a steady flow field (e.g. [1]). The
steady analysis is typically based on the advection–dispersion
equation with the mean velocity transporting the pollutants
downstream, while the molecular and/or turbulence dispersion
act to reduce the concentration peak while enlarging the Gaussian
width. The analysis also typically assumes no direct link between
the advective and dispersive displacements, such that they can be
decoupled for analysis bymeans of a Galilean transformation of the
coordinate with the mean flow velocity. A well-known example
with this approach is the quantitative analysis for the diffusion in
steady pipe flows, which results can be found in many textbooks,
e.g. [1].

Compared to steady flows, the correspondingunderstandings of
the diffusion in an oscillating flow field are not developed as well.
This is despite the fact that the general knowledge of the diffu-
sion in oscillation flows covers many physical phenomena. Some
prior studies include Watson [2] who investigated the diffusion
phenomenon in oscillatory pipe flows and evaluated the diffusion
coefficient. Mei et al. [3] examined the transport and resuspension
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of fine particles in an oscillatory tidal boundary near a small penin-
sula. Hazra et al. [4] analyzed the solute dispersion in a channel
during a periodic oscillating flow, and pointed out that the longitu-
dinal dispersion due tomolecular diffusion andnon-uniform cross-
section velocity can be influenced by the frequency and amplitude
of the flow. Recently, Law [5] and Huang and Law [6] examined the
longitudinal dispersion induced by Stokes drifts under monochro-
matic and random waves, respectively. The above studies again
generally focus on conditions whereby the advective and diffusive
displacements of the pollutant can be decoupled, in an approxi-
mate manner akin to the Generalized Lagrangian Mean theory [7].

The Eulerian wave-induced oscillatory flow field, despite
its deterministic nature, can in fact influence the diffusive
behavior depending on the wave characteristics. This situation
is rarely addressed. One exception is Jansons [8] who explored
an alternative method to calculate the Taylor dispersivity in
oscillatory flows and obtained exact expressions for some specific
cases. In this study, we examine the stochastic diffusion of passive
substances in a progressive and standingwave field, with the focus
on the nonlinear interactions between the stochastic diffusive
behavior and the deterministic oscillatory advective motion.
The random Brownian diffusion, while exact in simulating the
molecular motion, can also provide a basic representation of
the dispersion induced by ambient turbulence that results from
residual vorticity generated by flow separation from boundaries
away from the region and transported to the flow domain. In this
study, we limit our scope to an environment whereby a small
parameter ε exists between the advective and the diffusivemotion.
This allows a perturbation analysis to be performed, leading to
analytical expressions that provide insights to the interaction.
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2. Analysis

In awavy environmentwith embeddeddiffusion, the incremen-
tal change in the particle trajectory Xt is assumed to be governed
by the following stochastic differential equation:

dXt = f (Xt , t) dt + dWt (1)

where f is the orbital velocity in an oscillatory flow,Wt is the Brow-
nianmotionwith dWt ∼ N(0, σ 2dt), i.e., Gaussianwith zeromean
and variance σ 2dt; σ 2

2 is a diffusion constant. The above formula-
tion was used by Jansons and Lythe [9] to investigate the kinemat-
ics of particle motion, with the objective of finding the resulting
Stokes drift in the stochastic flow. To facilitate the analysis, we first
define the non-dimensional parameters as follows:

Xt →
Xt

k
; t →

t
ω

; σ →
σ
√

ω

k
; f → fA (2)

where k = 2π/L is the characteristic wave number and L is the
characteristic wave length; ω = 2π/T is the characteristic wave
angular frequency and T is the characteristic wave period; A is the
characteristic amplitude of thewave-induced velocity. The govern-
ing equation is then transformed to

dXt = εf (Xt , t) dt + dWt (3)

where ε = kA/ω, and dWt ∼ N

0, σ 2dt


.

Consider a perturbation series of Xt for the small parameter ε:

Xt = X (0)
t + εX (1)

t + ε2X (2)
t + O


ε3 . (4)

Jansons and Lythe [9] showed that the zeroth order motion is
caused directly by the Brownianmotion, and the first ordermotion
is driven by the oscillatory flow, i.e.,

X (0)
t = Wt and X (1)

t =

∫ t

0
f (Ws, s) ds. (5)

We now proceed to analyze the diffusion behavior of the passive
substance. Writing (3) in an incremental form as

Xt+1t = Xt + εf (Xt , t)1t + 1Wt (6)

where 1Wt = Wt+1t − Wt , and taking variance on both sides
and noting that 1Wt is independent of the other two terms on
the RHS, one obtains the diffusion behavior after rearranging and
taking 1t → 0 as

dVar Xt

dt
= 2εcov (Xt , f (Xt , t)) + σ 2. (7)

We examine the large time behavior of Var Xt , and hence of cov(Xt ,
f (Xt , t)). By definition,

cov(Xt , f (Xt , t)) = ⟨Xt f (Xt , t)⟩ − ⟨Xt⟩ ⟨f (Xt , t)⟩ (8)

where ⟨.⟩ denotes the ensemble average or mathematical expecta-
tion. Taking expectation on the integrated form of (3) and noting
that ⟨dWt⟩ = 0, one obtains

⟨Xt⟩ = ε

∫ t

0
⟨f (Xs, s)⟩ ds. (9)

The leading term of the expectation ⟨Xt⟩ is the stochastic Stokes
drift, which is O


ε2


[9]. Eq. (9) thus implies that ⟨f (Xt , s)⟩ must

be O (ε), and hence the second term in (8) is O

ε3


. We will show

later that the first term of (8), ⟨Xt f (Xt , t)⟩, is O (ε), and therefore to
the leading order for large t ,

cov(Xt , f (Xt , t)) ∼ ⟨Xt f (Xt , t)⟩ . (10)

Using a Taylor series for f (·, t) as

f (Xt , t) = f (X (0)
t , t) + εX (1)

t f ′(X (0)
t , t)

+ ε2


(X (1)

t )2

2
f ′′(X (0)

t , t) + X (2)
t f ′(X (0)

t , t)


+ O


ε3 (11)

where a dash on f denotes differentiation with respect to its first
(position) argument, one obtains

Xt f (Xt , t) = X (0)
t f (X (0)

t , t) + ε[X (1)
t f (X (0)

t , t) + X (0)
t X (1)

t f ′(X (0)
t , t)]

+ ε2


X (2)
t f (X (0)

t , t) + (X (1)
t )2f ′(X (0)

t , t)

+
X (0)
t (X (1)

t )2

2
f ′′(X (0)

t , t) + X (0)
t X (2)

t f ′(X (0)
t , t)


+ O


ε3 . (12)

Thus, taking expectation on both sides,

⟨Xt f (Xt , t)⟩ = ⟨X (0)
t f (X (0)

t , t)⟩ + ε[⟨X (1)
t f (X (0)

t , t)⟩

+ ⟨X (0)
t X (1)

t f ′(X (0)
t , t)⟩] + O


ε2 . (13)

The above equation describes the diffusion behavior in any deter-
ministic oscillatory flow field with the small ε. In the following, we
shall examine specifically the condition whereby the flow field is
induced by a monochromatic progressive wave.

3. Monochromatic progressive wave

We now focus on the basic case where the Eulerian flow field is
a monochromatic progressive wave, i.e. f (Y , t) = cos (Y − t). The
following standard results (see Appendix) are frequently used in
deriving the expectations, namely, for a Gaussian random variable
Y with zero mean and variance σ 2,

⟨sin (Y − t)⟩ = − exp


−
1
2
σ 2


sin t;

⟨cos (Y − t)⟩ = exp


−
1
2
σ 2


cos t

(14)

⟨Y sin(Y − t)⟩ = σ 2 exp


−
1
2
σ 2


cos t (15)

⟨Y cos(Y − t)⟩ = σ 2 exp


−
1
2
σ 2


sin t. (16)

With these results, we now proceed to evaluate the three
expectations in (13). First, using (5) and (16),

⟨X (0)
t f (X (0)

t , t)⟩ = σ 2t exp


−
1
2
σ 2t


sin t (17)

which vanishes as t → ∞. Note that the decay is exponentially fast
at a rate ofσ 2/2,which is generally true for other terms thatwill be
discussed later. The implication is that the large time behaviormay
be assumed to be dominant when t is greater than somemultiples
of σ 2. Next,

⟨X (1)
t f (X (0)

t , t)⟩ =

∫ t

0
⟨cos (Ws − s) cos (Wt − t)⟩ ds

=
1
2

∫ t

0
⟨cos [(Wt − Ws) − (t − s)]⟩

+ ⟨cos [(Wt + Ws) − (t + s)]⟩ ds (18)

where compound angle formula has been used. Note that Wt =

Ws + ∆t−s, where ∆t−s is the increment from s to t and is
Gaussian with zeromean and variance σ 2 (t − s). ThusWt +Ws =

2Ws + ∆t−s is Gaussian with zero mean, and with a variance of



Download English Version:

https://daneshyari.com/en/article/805318

Download Persian Version:

https://daneshyari.com/article/805318

Daneshyari.com

https://daneshyari.com/en/article/805318
https://daneshyari.com/article/805318
https://daneshyari.com

