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a b s t r a c t

The presence of random fluctuations of air temperature within the Earth’s atmosphere is a well-
documented phenomenon. During the past seventy years there have been numerous experimental efforts
to accurately measure air temperature as a function of altitude and, through careful data analysis,
provide statistics describing these fluctuations and the associated fluctuations in temperature gradients.
In addition, several researchers suggest the presence of atmospheric layers or ‘‘sheets’’ where the statistics
describing fluctuations in air temperature can vary significantly from layer to layer. Herein, we propose
a model to represent fluctuations of air temperature within a layered atmosphere. The model is a special
type of inhomogeneous non-Gaussian differentiable random process and can be calibrated to available
data on the marginal statistics and spectral content of the fluctuating temperature field, as well as the
associated first derivative of the process representing fluctuations in temperature gradients. Properties
of the proposed model are presented, and statistical realizations of the fluctuating temperature field and
its gradient are computed and presented for illustration. The random vibration response of a spacecraft
falling to Earth through these fluctuating conditions is then considered to demonstrate the usefulness of
the proposed model.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Random fluctuations of air temperature in the Earth’s atmo-
sphere are a ubiquitous phenomenon. The quantification of these
fluctuations is of interest for a variety of reasons including: (i) the
development of general theories of atmospheric turbulence [1,2];
(ii) quantifying the removal of heat and water vapor from the
ground into the surrounding atmosphere [3,4]; (iii) improving the
accuracy of radar measurements [5,6]; and (iv) achieving a bet-
ter understanding of the diffusion of electromagnetic and acoustic
waves [7]. Through both laboratory and field experiments, several
researchers have measured small-scale random fluctuations in air
temperatures and temperature gradients, providing some statis-
tics and estimates of marginal distributions [8,3,9,10]. Others have
demonstrated evidence of larger-scale atmospheric layers where
fluctuations in temperatures and temperature gradients behave
very differently [5].
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Herein, we are concerned with quantifying the dynamic
response of a spacecraft undergoing ballistic re-entry. Typically,
this is achieved through standard trajectory analyses; see, for
example, the books by Martin [11] or Regan and Anandakrishnan
[12]. However, because a completely deterministic model for
the atmosphere is assumed, this approach is limited to quasi-
static response of the vehicle. Herein, we include a model for
temperature fluctuations within the Earth’s atmosphere as input
to a trajectory analysis, and assess the resulting random vibration
response of the spacecraft. The approach taken here appears to
be the first attempt to understand the effect that fluctuations in
atmospheric conditions might have on a spacecraft undergoing
ballistic re-entry.

The proposed model for temperature fluctuations is a par-
ticular type of non-Gaussian random process called a transla-
tion process, defined by a nonlinear transformation of a Gaussian
process [13, Section 3.1.1]. By careful selection of the properties of
the Gaussian process and the functional form of the transforma-
tion, it is possible to calibrate the translation process to available
data on small-scale fluctuations of both temperature and temper-
ature gradients, including the variance, coefficient of kurtosis, and
spectral content. The effects of the larger-scale atmospheric layers
noted by Dalaudier et al. [5] can also be captured by the proposed
model. While there have been numerous applications of transla-
tion processes in structural engineering and mechanics, including
the modeling of material properties [14,15], aerodynamic loads on
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structures [16,17], ocean wave heights [18], and ground motion
due to seismic events [19], the work proposed herein appears to
be the first attempt to use translation processes to represent at-
mospheric temperature fluctuations.

The organization of the paper is as follows. Section 2 provides
a discussion of some of the properties of translation processes,
including the properties of the first derivative of a mean-square
differentiable translation process, which is used to represent fluc-
tuations in temperature gradients. The application of the trans-
lation process and its first derivative to represent fluctuations in
atmospheric temperature and temperature gradients is presented
in Section 3. Initially, we model fluctuations within a single atmo-
spheric layer by a suitable transformation of a homogeneous Gaus-
sian process. The proposed model is then generalized to represent
temperature fluctuations within a layered atmosphere by consid-
ering transformations of a particular type of inhomogeneous Gaus-
sian process called anoscillatory process [20]. This approach allows
for the changing variance and spectral content that is typical of dif-
ferent layers in the atmosphere [8]. In Section 4, we consider the
atmospheric re-entry of a spacecraft as it falls to Earth through the
fluctuating atmosphere, and assess the resulting random vibration
response. For completeness, a brief discussion on oscillatory pro-
cesses is presented in the Appendix.

2. Translation processes

Let z ≥ 0 denote a spatial coordinate, e.g., the geometric
altitude above the surface of the Earth, and define G(z) to be a
real-valued, mean-square differentiable, homogeneous Gaussian
random process with zero mean, unit variance, and covariance
function rG(η) = E[G(z)G(z + η)]. A translation process is defined
to be a monotonic increasing, z-invariant transformation of G of
the following form [13, Section 3.1.1]

Y (z) = F−1
Y ◦ Φ(G(z)) = h(G(z)), (1)

where FY is an arbitrary cumulative distribution function (CDF),
andΦ denotes the CDF of the standard Gaussian random variable.
Herein, we assume FY is absolutely continuous, that is, we assume
there exists an integrable function fY such that fY (y) = dFY (y)/dy
is a probability density function (PDF). It can be shown that Y is a
homogeneous process with marginal CDF FY , marginal PDF fY , and
one-sided spectral density function

gY (κ) = 4
∫

∞

0
rY (η) cos(2πκ η) dη, (2)

where κ = 1/λ ≥ 0 is a spatial frequency or wavenumber
corresponding to a wave with wavelength λ, and
rY (η) = E[Y (z) Y (z + η)]

=

∫
∞

−∞

du1

∫
∞

−∞

h(u1) h(u2) φ(u1, u2; rG(η)) du2, (3)

is the correlation function of Y with φ(u1, u2; rG(η)) representing
the joint PDF of dependent Gaussian random variables G(z) and
G(z + η)with correlation coefficient rG(η).

The first derivative of Y (z) is

Y ′(z) =
dY (z)
dz

=
dh
dG

dG
dz

= h′(G(z)) · G′(z), z ≥ 0, (4)

where the existence of h′ is guaranteed since FY is absolutely con-
tinuous.We can show that: (i)G′(z) = dG(z)/dz is a homogeneous
Gaussian process with zeromean and variance σ 2

G′ = rG′(0), where
rG′(η) = E[G′(z)G′(z + η)] = −r ′′

G(η) is the correlation function
of G′(z); (ii) G(z) and G′(z) are independent random variables for
each z; (iii) Y ′(z) is a homogeneous process with zero mean; and
(iv) unless h is a constant, the derivative of a translation process is
not a translation process.

The marginal distribution of Y ′(z) defined by Eq. (4) is obtained
by integration of the joint PDF of random vector (G(z),G′(z))T for

a b

Fig. 1. Transformation function h, panel (a), and marginal CDF of translation
process FY , panel (b), for various parameters ξ and α.

fixed z over a suitable domain, i.e.,

FY ′(a) = Pr

Y ′(z) ≤ a


=

∫∫
v h′(u)≤a

φ(u) φ

v

σG′


du dv, (5)

where the integrand is a separable function of u and v since G and
G′ are independent. By Eq. (4) and properties of Gaussian random
variables, the moments of order p ≥ 1 of Y ′(z) are

mp,Y ′ = E[Y ′(z)p] = E[h′(G(z))p] E[G′(z)p]

=


0, p = 1, 3, . . .
1 · 3 · · · (p − 1) σ p

G′ E[h′(G(z))p], p = 2, 4, . . . . (6)

In particular, Y ′ has zero mean, zero skewness, and a coefficient
of kurtosis equal to 3 E[h′(G(z))4]/(E[h′(G(z))2])2. The correlation,
covariance, and spectral density functions of Y ′(z) are rY ′(η) =

cY ′(η) = E[Y ′(z) Y ′(z + η)] = −r ′′

Y (η) and gY ′(κ) = (2πκ)2 gY (κ),
respectively.

Wenext consider a particular translationprocess thatwill prove
useful for modeling temperature fluctuations in Section 3. Define

Y (z) = α|G(z)|ξ sgn(G(z)) = h(G(z)), z ≥ 0, (7)

whereα, ξ > 0 are parameters, and sgn(u) = −1, 0, or 1 for u < 0,
u = 0, or u > 0, respectively. Process Y (z) is a translation process
since it is a monotonic increasing, z-invariant transformation of
Gaussian process G; Y is Gaussian if, and only if, ξ = 1. The
marginal CDF of Y (z) is

FY (y) =

∫
α|u|ξ sgn(u)≤y

φ(u) du =

∫
|y/α|

1/ξ sgn(y)

−∞

φ(u) du

= Φ

 y
α

1/ξ sgn(y)

. (8)

Transformation h defined by Eq. (7) and the corresponding
marginal CDF of Y defined by Eq. (8) are illustrated by Fig. 1 for
different values of ξ and α. The distribution is symmetric about
y = 0 for all ξ and α and, as ξ increases, the rate of decay of the
tails of the distribution decreases. Further, Y (z) has zero mean and
moments

mp,Y =


0, p = 1, 3, . . .
αp 2ξp/2

√
π

Γ


ξp + 1

2


, p = 2, 4, . . . (9)

where Γ ( · ) denotes the Gamma function [21, Chapter 6]. For
example, the variance and coefficient of kurtosis of Y (z) are
(α2 2ξ/

√
π)Γ (ξ + 1/2) and

√
π Γ (2ξ + 1/2)/(Γ (ξ + 1/2))2,

respectively.
By Eqs. (4) and (7),

Y ′(z) = ξ α|G(z)|ξ−1G′(z), z ≥ 0, (10)
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