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a b s t r a c t

In this paper attention is directed to the reliability-based optimization of uncertain structural systems
under stochastic excitation involving discrete–continuous sizing type of design variables. The reliability-
based optimization problem is formulated as theminimization of an objective function subject tomultiple
reliability constraints. The probability that design conditions are satisfied within a given time interval is
used as a measure of system reliability. The problem is solved by a sequential approximate optimization
strategy cast into the framework of conservative convex and separable approximations. To this end,
the objective function and the reliability constraints are approximated by using a hybrid form of linear,
reciprocal and quadratic approximations. The approximations are combined with an effective sensitivity
analysis of the reliability constraints in order to generate explicit expressions of the constraints in terms of
the design variables. The explicit approximate sub-optimization problems are solved by an appropriate
discrete optimization technique. The optimization scheme exhibits monotonic convergence properties.
Two numerical examples showing the effectiveness of the approach reported herein are presented.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Formany structural optimization problems the design variables
must be selected from a list of discrete values. For exam-
ple, cross-sectional areas of truss members have to be chosen
in general from a list of commercially available member sizes. In
fact, design variables must be considered as discrete in a large
number of practical design situations. Deterministic optimization
procedures involving discrete design variables have been ex-
tensively studied in the literature [1–3]. Traditional methods
such as branch and bound techniques, combinatorial methods,
and evolution-based optimization techniques attack the dis-
crete variable design optimization problem directly in the pri-
mal variable space [4–6]. These methods are quite general but
are associated with a large number of function calls (evalu-
ation of objective and constraint functions). Schemes for dis-
crete structural optimization considering uncertainties have not
been addressed as frequently as their deterministic counterpart
[7–10]. The optimal design of uncertain structural systems under
stochastic loading such as seismic excitations, water wave excita-
tions, wind excitations, traffic loadings, etc., has been usually car-
ried out by considering continuous design variables [11,12]. One
of the difficulties in these types of problems is the high compu-
tational cost involved in the reliability analyses required during
the optimization process. This is due to the fact that the reliability
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estimation of stochastic dynamical systems involves the estima-
tion of failure probabilities in high-dimensional uncertain parame-
ter spaces. In thiswork attention is directed to discrete–continuous
robust reliability-based optimization of uncertain structural sys-
tems under stochastic excitation. Specifically, the objective of this
study is to propose a general framework for performing reliability-
based optimization considering discrete–continuous sizing type of
design variables in an effective manner. In this context the pro-
posed approach represents a generalization of the contribution
presented in [13]. Novel aspects of this work include the incorpo-
ration of uncertain system parameters in the model, the use of an
effective sensitivity analysis of reliability measures in the context
of a discrete–continuous optimization scheme, and the implemen-
tation of a globally convergent optimization algorithm for solving
a class of reliability-based design optimization problems.

The reliability-based optimization problem is formulated as
the minimization of an objective function subject to multiple re-
liability constraints. The probability that design conditions are
satisfied within a given time interval is used as the measure
of system reliability. All uncertainties involved in the problem
(system parameters and loading) are considered explicitly dur-
ing the design process. Thus, final designs are robust in the sense
that the optimization scheme accounts for the uncertainty in the
system parameters as well as the uncertainty in the excitation.
The basic mathematical programming statement of the structural
optimization problem is converted into a sequence of explicit ap-
proximate primal problems. For this purpose, the objective func-
tion and the reliability constraints are approximated by using a
hybrid form of linear, reciprocal and quadratic approximations.
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An approximation strategy based on an incomplete quadratic con-
servative approximation is considered in the present formulation
[14,15]. An adaptive Markov Chain Monte Carlo procedure is
used for the purpose of estimating the failure probabilities.
The approach, called subset simulation, is robust to dimen-
sion size and efficient in computing small failure probabilities
[16]. The information generated by subset simulation is also
used to estimate the sensitivity of the reliability constraints
with respect to the design variables. The above information
is combined with an approximation strategy to generate ex-
plicit expressions of the objective and reliability constraints in
terms of the design variables. The explicit approximate pri-
mal problems are solved either by standard methods that treat
the problem directly in the primal variable space [4–6,3] or
by dual methods [17,1,13]. The proposed optimization scheme
exhibits monotonic convergence, that is, starting from an initial
feasible design the scheme generates a sequence of steadily im-
proved feasible designs. It ensures that the optimal solution of each
approximate sub-optimization problem is a feasible solution of the
original problem, with a lower objective value than the previous
cycle.

First, the optimization problem, by considering the discrete–
continuous sizing type of design variables is presented. The
solution strategy of the problem in the framework of conservative
convex and separable approximations is then discussed. Next,
several implementation issues including reliability and sensitivity
estimation are addressed. Finally, two numerical examples are
presented.

2. Problem formulation

2.1. Optimization problem

Consider a structural optimization problem defined as the
identification of a vector {x} of design variables to minimize an
objective function, that is
Minimize f ({x}) (1)
subject to the design constraints
hj({x}) ≤ 0, j = 1, . . . , nc (2)
with side constraints

xli ≤ xi ≤ xui i ∈ IC (3)
and

xi ∈ Xi = {x̄li, l = 1, . . . , ni}, i ∈ ID (4)
where IC denotes the set of indices for continuous design variables
while ID denotes the set of indices for discrete design variables.
The xli and xui denote the lower and upper limits for the design
variables that are continuous i.e. i ∈ IC , and Eq. (4) represents
the side constraints for the design variables that are discrete
i.e. i ∈ ID. The set Xi represents the available discrete values
for the design variable xi, i ∈ ID, listed in ascending order. It is
assumed that the available values are distinct and they correspond
to quantities such as cross-sectional areas, moments of inertia,
etc. The particular quantity to be used depends on the problem at
hand. The objective function can be defined in terms of initial costs,
repair and replacement costs, downtime costs, etc. On the other
hand, the design constraints can be given in terms of reliability
constraints and/or deterministic design requirements. Therefore
the above formulation is quite general in the sense that different
reliability-based optimization formulations can be considered.

2.2. Reliability constraints

In the context of reliability-based optimization of structural
systems under stochastic excitation the design constraints can be
written as
hj({x}) = PFj({x})− P∗

Fj ≤ 0, j = 1, . . . , nc (5)

where PFj({x}) is the probability of the failure event Fj evaluated
at the design {x}, and P∗

Fj
is the corresponding target failure

probability. The failure probability function PFj({x}) evaluated at
the design {x} can be expressed in terms of the multidimensional
probability integral

PFj({x}) =

∫
ΩFj ({x})

q({θ})p({z})d{z}d{θ}, j = 1, . . . , nc (6)

where ΩFj({x}) is the failure domain corresponding to the failure
event Fj evaluated at the design {x}. The failure domain can be
defined in terms of a performance function κj as

ΩFj({x}) = {{θ}, {z} | κj({x}, {θ}, {z}) ≤ 0}. (7)

where the vectors {θ}, θi, i = 1, . . . , nU , and {z}, zi, i =

1, . . . , nT represent the vector of uncertain structural parameters
and the random variables that specify the stochastic excitation, re-
spectively. The uncertain structural parameters {θ} are modeled
using a prescribed probability density function q({θ}) while the
random variables {z} are characterized by a probability density
function p({z}). These functions indicate the relative plausibility
of the possible values of the uncertain parameters {θ} ∈ Ω{θ} ⊂

RnU and random variables {z} ∈ Ω{z} ⊂ RnT , respectively. The
failure probability functions PFj({x}), j = 1, . . . , nc account for the
uncertainty in the system parameters as well as the uncertainties
in the excitation. As previously pointed out additional constraints
related to deterministic design requirements can also be consid-
ered in the formulation.

2.3. First excursion probability

For systems under stochastic excitation the probability that
design conditions are satisfied within a particular reference period
(first excursion probability) provides a useful reliability measure.
The failure events Fj, j = 1, . . . , nc are defined as

Fj({x}, {θ}, {z})

= max
i=1,...,nj

max
t∈[0,T ]

|sij(t, {x}, {θ}, {z})| ≥ si
∗

j (8)

where [0, T ] is the time interval, sij(t, {x}, {θ}, {z}), j = 1, . . . , nc,
i = 1, . . . , nj are the response functions associatedwith the failure
criterion Fj, and si

∗

j is the corresponding critical threshold level. The
performance functions for this case are given by

κj({x}, {θ}, {z}) = si
∗

j − max
i=1,...,nj

max
t∈[0,T ]

|sij(t, {x}, {θ}, {z})|,

j = 1, . . . , nc (9)

where the response functions sij(t, {x}, {θ}, {z}), j = 1, . . . , nc, i =

1, . . . , nj are obtained from the solution of the equation of motion
that characterizes the structural model.

3. Sequential approximate optimization

The solution of the structural optimization problem given by
Eqs. (1)–(4) is obtained by transforming it into a sequence of sub-
optimization problemshaving a simple explicit algebraic structure.
Thus, the strategy is to construct successive approximate analytical
sub-problems. To this end, the objective and the constraint func-
tions are represented by using approximate functions dependent
on the design variables. For the purpose of constructing the ap-
proximations all design variables are assumed to be continuous.

3.1. First-order approximation

Let p({x}) be a generic function involved in the optimization
problem, i.e. the objective or constraint functions, and {x0} a point
in the feasible design space. The function p({x}) is approximated
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