
Probabilistic Engineering Mechanics 26 (2011) 281–293

Contents lists available at ScienceDirect

Probabilistic Engineering Mechanics

journal homepage: www.elsevier.com/locate/probengmech

Dynamic analysis of bridge with non-Gaussian uncertainties under a
moving vehicle
S.Q. Wu, S.S. Law ∗

Civil and Structural Engineering Department, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China

a r t i c l e i n f o

Article history:
Received 9 February 2010
Received in revised form
13 July 2010
Accepted 13 August 2010
Available online 21 August 2010

Keywords:
Bridge–vehicle interaction
Road surface roughness
Spectral stochastic finite element method
Karhunen–Loève expansion
Polynomial Chaos expansion
non-Gaussian

a b s t r a c t

An analysis method on the bridge–vehicle interaction problemwith uncertainties is proposed. The bridge
is modeled as a simply supported Euler–Bernoulli beam with non-Gaussian material parameters with
a vehicle moving on top modeled by a deterministic four degrees-of-freedom mass–spring system. The
non-Gaussian uncertainty in bridge ismodeled by the Spectral Stochastic Finite ElementMethod (Ghanem
and Spanos (1991) [17]), and themathematicalmodel of the coupled bridge–vehicle system,with the road
surface roughness assumed as a Gaussian random process, will be solved by the Newmark-β method. The
proposed model is verified by the Monte Carlo Simulation with numerical examples. Different levels of
uncertainties in both the excitation and system parameters are investigated. Criteria on the selection of
both the order of Polynomial Chaos and the threshold for truncation in the Karhunen–Loève expansion
are provided. Results show that the proposed algorithm is promising for the dynamic analysis of the
bridge–vehicle interaction problem even with a high level of system and excitation uncertainties.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic responses of a bridge structure subject to moving
vehicular loads have been studied for decades. The research on
the bridge–vehicle interaction problem can be mainly categorized
into two kinds according to the technique employed to solve the
equation of motion of the bridge–vehicle system: (1) methods
based on modal superposition technique [1–5]; and (2) methods
based on finite element method [6–8]. The latter is capable of
handling more complex bridge–vehicle models with complex
boundary conditions compared with the former which needs
vibration mode shapes for solving system equations.

The above methods are based on deterministic system param-
eters of the bridge and deterministic excitation due to moving
vehicle. Moreover, the road surface roughness is considered as de-
terministic samples of irregular profile according to its power spec-
tral density defined in the ISO standard [9]. However, the contact
forces between the bridge and the vehicle are random due to the
road surface roughness and also the bridge–vehicle system often
exhibits an inherent randomness in the system parameters such as
Young’smodulus,mass density, etc. especiallywhen there are local
changes in the structure. The conventional deterministic analysis
generally represents only an ‘‘approximation’’ of the actual real-
ity due to these inherent uncertainties in the structural properties
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as well as in the loading processes. A stochastic analysis should be
adopted to study the bridge–vehicle interaction problem.

Stochastic excitations are often modeled as random pro-
cesses and different tools have been developed for represent-
ing these processes [10] such as spectral representation [11],
Karhunen–Loève (K–L) expansion [12], Polynomial Chaos (PC) ex-
pansion [13], etc. Currently the stochastic analysis of a structural
system with uncertain system parameters is usually performed
with the Monte Carlo Simulation [14] which is very versatile but
comparatively time-consuming. This technique often serves to val-
idate other approximate analyticalmethods. One of the other alter-
nate approacheswidely used for evaluating the stochastic response
is the perturbation approach [15]. However, this approach is ac-
curate only when the random parameters have small deviations
from the center value and requires simulations to assess the relia-
bility of the results. The Neumann expansion method [16], which
is similar to the perturbation method, also requires simulations to
assess the reliability of the results. The convergence of the Neu-
mann series to represent the inverse operator requires the norm
of the kernel smaller than unity. The Spectral Stochastic Finite El-
ement Method (SSFEM) [17,18] has been developed to overcome
these weaknesses. It is a general technique for the solution of com-
plex problems in probabilistic mechanics and is capable of han-
dling system uncertainties with a large range of variation when
the K–L expansion and the PC expansion are employed. Numer-
ous applications [19,20] can be found with the SSFEM employed
for solving the engineering problem with uncertainties.

Based on the theory developed for stochastic analysis in
recent years, research on the dynamic response of a bridge deck
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under moving vehicle (or forces) has been performed by many
researchers. Some researchers only considered the randomness
in the excitation due to the road surface roughness where the
system parameters of both bridge and vehicle were treated
as deterministic. These works can mainly be classified into
the frequency domain method [21,22] and the time domain
method [23,24]. Others extended the work by introducing
randomness in the systemmodeling [25–28] inwhich theGaussian
assumption wasmade on the system parameters and perturbation
method was employed for the solution. However, when the
variation of uncertainty increases, the Gaussian assumption on the
system parameters, which has a very small probability to take
up a negative value, may lead to an inaccurate solution and the
perturbation method also tends to become less accurate.

In this paper, an extension of the authors’ previous work [29]
is proposed to analyze the bridge–vehicle interaction problem
with uncertainties. The bridge is modeled as a simply supported
Euler–Bernoulli beam with non-Gaussian material parameters
with a vehicle moving on top modeled by a deterministic
four degrees-of-freedom mass–spring system. The non-Gaussian
uncertainty in the bridge is modeled by the Spectral Stochastic
Finite Element Method (SSFEM), and the mathematical model
of the coupled bridge–vehicle system, with the road surface
roughness assumed as a Gaussian random process, will be solved
by the Newmark-β method. The proposed model is verified by the
Monte Carlo Simulation with numerical examples. Different levels
of uncertainties in both the excitation and system parameters
are investigated. Criteria on the selection of both the order
of Polynomial Chaos and the threshold for truncation in the
Karhunen–Loève expansion are provided. Results show that the
proposed algorithm is promising for the dynamic analysis of the
bridge–vehicle interaction problem even with a high level of
system and excitation uncertainties.

The outline of the present work is as follows: the equation
of motion of the bridge–vehicle system with uncertainties is
derived in Section 2. Since the Karhunen–Loève expansion and
Polynomial Chaos expansion are required for representing the
random processes, the basic theories of these expansions are
introduced in Sections 3 and 4, respectively. The modeling of
the bridge–vehicle interaction problemwith non-Gaussian system
uncertainties using SSFEM is given in Section 5 together with
discussions on the response statistics. Numerical simulations are
presented in Section 6 to verify the effectiveness of the proposed
algorithm with discussions on different levels of system and
excitation randomness. Some conclusions are drawn in Section 7.

2. The system equation of motion

A vehicle with four degrees-of-freedom moving at a uniform
speed v over a simply supported bridge deck is shown in Fig. 1.
The equation ofmotion of the vehicle is derived using the Lagrange
formulation as follows:[
MV1 0
0 MV2

]
Ÿ +

[
CV11 CV12
CV21 CV22

]
Ẏ +

[
KV11 KV12
KV21 KV22

]
Y

= −


0

F(t, θ)


+


0
F0


(1)

where Y = {yV θV y1 y2}T is the vector of response of the vehicle.
MV1,MV2, CV11, CV12, CV21, CV22, KV11,KV12, KV21, KV22 are the sub-
matrices of themass, damping and stiffnessmatrices of the vehicle,
respectively, which are given in Appendix A. F0 is the static load
vector of the vehicle. F(t, θ) = {F1(t, θ), . . . , FNF (t, θ)}T is the
random bridge–vehicle interaction force vector, NF is the number

of interaction forces, and θ denotes the random dimension. When
NF = 2, the interaction forces are

F1(t, θ) = (m1 + a2mv) g + Kt1(y1 − w(x̂1(t), t, θ)
−r(x̂1(t), θ)) + Ct1(ẏ1 − ẇ(x̂1(t), t, θ)

−w′(x̂1(t), t, θ)˙̂x1(t) − r ′(x̂1(t), θ)˙̂x1(t))
F2(t, θ) = (m2 + a1mv) g + Kt2(y2 − w(x̂2(t), t, θ)

−r(x̂2(t), θ)) + Ct2(ẏ2 − ẇ(x̂2(t), t, θ)

−w′(x̂2(t), t, θ)˙̂x2(t) − r ′(x̂2(t), θ)˙̂x2(t))

(2)

where Kt1, Kt2, Ct1, Ct2 are the stiffness and damping of the two
tires, respectively. The road surface roughness r(x, θ) is considered
as a Gaussian random process with a Power Spectral Density (PSD)
function given in Appendix B. x̂1(t), x̂2(t) are the positions of the
front and rear axles respectively on the bridge at time t . g is the
acceleration due to gravity. w(x̂i(t), t, θ) is the vertical random
bridge displacement at the contact point of the ith interaction force
at time t . The over-dot (·) denotes the differentiation with respect
to time t and the right prime (′) denotes the differentiation with
respect to local coordinate x in this paper.

The bridge is modeled as a planar simply supported Eu-
ler–Bernoulli beam. The mass density ρ(x, θ), Young’s modulus
E(x, θ) and damping c(x, θ) are assumed as non-Gaussian ran-
dom processes, with mean value ρ̄, Ē, c̄ and standard deviation
σρ, σE, σc , respectively, and the randomparts ofwhich are denoted
as ρ̃, Ẽ, c̃ , respectively. The equation of motion of the bridge struc-
ture can be written as

ρ(x, θ)A
∂2

∂t2
w(x, t, θ) + c(x, θ)

∂

∂t
w(x, t, θ)

+ E(x, θ)I
∂4

∂x4
w(x, t, θ)

=

NF−
j=1

Fj(t, θ)δ(x − vjt), (j = 1, 2, . . . ,NF ) (3)

where A and I are the cross-sectional area and the moment
of inertia of the beam, respectively, which are assumed as
deterministic in this study. w(x, t, θ) is the random displacement
which varies with the location x and time t . vj is the constant speed
of the jth moving interaction force Fj(t, θ); δ(t) is the Dirac delta
function.

Employing the finite element method and with the assumption
of Rayleigh damping, Eq. (3) will take the following form

MbR̈(t, θ) + CbṘ(t, θ) + KbR(t, θ) = HbF(t, θ) (4)

where Mb, Cb and Kb are the random mass, damping and stiffness
matrices, respectively, and Mb = Md + M̃, Cb = Cd + C̃,Kb = Kd

+ K̃. Md, M̃, Cd, C̃,Kd, K̃ are the deterministic and random com-
ponents of the mass, damping and stiffness matrices respectively
of the beam and they can be generated by assembling the corre-
sponding elemental matrices as

Me
d =

∫
l
HeT ρ̄(x)AHedl M̃e

=

∫
l
HeT ρ̃(x, θ)AHedl

Ke
d =

∫
l
BeT Ē(x)IBedl K̃e

=

∫
l
BeT Ẽ(x, θ)IBedl (5)

where He and Be are the shape function matrix and strain–
displacement matrix for each element, respectively. l is the length
of beam element. Rayleigh damping is assumed with the equation,

Cb = cMMb + cKKb (6)

where cM and cK are constants.
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