Accepted Manuscript

The cauchy problem for linear inhomogeneous wave equations with variable coefficients

Kai Liu, Wei Shi

PII: \quad S0893-9659(18)30219-2
DOI: https://doi.org/10.1016/j.aml.2018.06.036
Reference: AML 5570

To appear in: Applied Mathematics Letters
Received date: 25 May 2018
Accepted date: 30 June 2018

Please cite this article as: K. Liu, W. Shi, The cauchy problem for linear inhomogeneous wave equations with variable coefficients, Appl. Math. Lett. (2018), https://doi.org/10.1016/j.aml.2018.06.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The cauchy problem for linear inhomogeneous wave equations with variable coefficients

Kai Liu ${ }^{\text {a }}$, Wei Shib ${ }^{\text {b,* }}$
${ }^{a}$ College of Applied Mathematics, Nanjing University of Finance\& Economics, Nanjing 210023, P.R. China
${ }^{b}$ College of Mathematical Sciences, Nanjing Tech University, Nanjing 211816, P.R.China

Abstract

In this paper, we present a new analytical formula for the Cauchy problem of the linear inhomogeneous wave equation with variable coefficients. The formula gives a much simpler solution than that given by the classical Poisson formula. The derivation is based on Duhamel's Principle and the theory of pseudodifferential operator. An example is solved by using the formula to illustrate the feasibility.

Keywords: Cauchy problem, inhomogeneous wave equation, variable coefficient

2010 Mathematics Subject Classification. 35L15, 35S10, 65L05, 65L06

1. Introduction

The history of partial differential equations can date back to the 18th century when the first one-dimensional wave equation $u_{t t}=u_{x x}$ was introduced by d'Alembert as a model of a vibrating string [1]. Giving its initial displacement $u(x, 0)=\varphi(x)$ and velocity $u_{t}(x, 0)=\psi(x)$, it is known that an explicit solution to the Cauchy, or initial value, problem of the wave equation is

$$
u(x, t)=\frac{1}{2}(\varphi(x-t)+\varphi(x+t))+\frac{1}{2} \int_{x-t}^{x+t} \psi(\xi) d \xi .
$$

If an external force $f(x, t)$ (per unit mass) applied on the string, then the equation becomes to an inhomogeneous wave equation $u_{t t}=u_{x x}+f(x, t)$. In this case, the solution which can be derived by using Duhamel's Principle is

$$
u(x, t)=\frac{1}{2}(\varphi(x-t)+\varphi(x+t))+\frac{1}{2} \int_{x-t}^{x+t} \psi(\xi) d \xi+\frac{1}{2} \int_{0}^{t} \int_{x-(t-\tau)}^{x+(t-\tau)} f(\sigma, \tau) d \sigma d \tau .
$$

Various methods have been utilized to solve the Cauchy problem for higher dimensional wave equation such as the Hadamard method of descent for $n=2$, the method of spherical means for $n=3$ [2], the analytic continuation of an integral of fractional order [3] and the finite part of a divergent integral [4], etc. A formal series solution has been derived by using a classical power series in [5] and the same formula is obtained in [6] by using the Adomian decomposition method. A direct derivation of the spherical means solution for arbitrary dimension n is presented using Fourier transform in [7].

Consider the Cauchy problem for the following linear inhomogeneous wave equation with variable coefficients in \mathbb{R}^{n}

$$
\begin{cases}u_{t t}+L u=f(x, t), & (x, t) \in \mathbb{R}^{n} \times \mathbb{R}_{+} \tag{1}\\ u(x, 0)=\varphi(x), & x \in \mathbb{R}^{n} \\ u_{t}(x, 0)=\psi(x), & x \in \mathbb{R}^{n}\end{cases}
$$

[^0]
https://daneshyari.com/en/article/8053340

Download Persian Version:

https://daneshyari.com/article/8053340

Daneshyari.com

[^0]: The research was supported in part by the Natural Science Foundation of China under Grant 11501288, 11701271 and 11671200, by the Natural Science Foundation of Jiangsu Province under Grant BK20150934, and by the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant 16KJB110010 and 14KJB110009.
 *Corresponding author
 Email addresses: laukai520@163.com (Kai Liu), shuier628@163.com (Wei Shi)

