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a b s t r a c t

The dissipativity with a bounded absorbing set in L2(Ω) for time-fractional
nonlinear sub-diffusion equation is investigated. A numerical scheme based on the
L1 method for time fractional derivative and the standard finite element method
in space direction is presented. The proposed numerical scheme can preserve the
dissipativity as the continuous equation. A numerical example is included to show
the asymptotic behavior of the numerical method.
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1. Introduction

Let Ω ⊂ Rn be an open bounded domain with Dirichlet boundary values ∂Ω and consider the following
time fractional sub-diffusion equation

Dα
t u− d∆u+ f(u) = 0, x ∈ Ω , α ∈ (0, 1), (1)

subject to the initial/boundary value conditions: u(x, 0) = u0 for x ∈ Ω and u(x, t) = 0 for x ∈ ∂Ω . Here
the symbol Dα

t denotes the Caputo time fractional derivative: Dα
t u(t) = 1

Γ(1−α)
∫ t

0
u(1)(τ)
(t−τ)α dτ for t > 0. Here

we take the nonlinear term f(u) to be a polynomial of odd degree with a positive leading coefficient given
by

f(u) =
2p−1∑
j=0

bju
j , b2p−1 > 0, p ∈ N+. (2)

Polynomial nonlinearity is a very common and typical case, including many important physical models such
as FitzHugh–Nagumo equations. Other examples can be found in [1–3].
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Fractional calculus originate in the seventeenth century and have the same long history as the integer-
order calculus. Fractional differential equations have achieved all-round development since the middle of
last century and are now widely applied in many fields such as the physics, finance and biology [4,5].
The most successful application is the fractional partial differential equations (PDEs) in various anomalous
diffusion models, which describe a diffusion process where the mean square displacement of a particle grows
slower or faster than that in the normal diffusion process. The anomalous diffusion has been proved in
many experiments, which show the superiority of fractional differential equations in the characterization of
complex processes. The representation formulas of fundamental solutions and decay properties of linear time
fractional subdiffusion equations have been well studied such as in [6–8]. The regularity of weak solutions
to such problems was recently considered in [9].

When α = 1 Eq. (1) recovers the classical parabolic equation. The natural object to describe the long time
behavior of solutions to nonlinear evolutionary PDEs is the global attractor. There are plenty of achievements
about the exponential attractors for integer-order reaction–diffusion equations. For more details, please refer
to the monographs and lectures in [1–3,10–12] and references therein. In the unbounded domain, Babin and
Nicolaenko [9] proved the existence of exponential attractors for reaction–diffusion systems and estimated
their fractal dimension. In the bounded domain, Efendiev and Miranville [10] obtained finite dimensions of
a global attractor in L∞(Ω) with nonlinearity f satisfying the arbitrary growth with inhomogeneous term.
In [2], Zhong, Yang and Sun introduced a new concept called the norm-to-weak continuous semigroup in a
Banach space and obtained the existence of the global attractor for a nonlinear reaction–diffusion equation
with the polynomial growth nonlinearity of arbitrary order, and that the global attractors are obtained in
Lp(Ω), H1

0 (Ω) and H2(Ω)∩H1
0 (Ω), respectively. In [3], Zhong and Zhong studied the exponential attractors

for the equation with arbitrary polynomial growth nonlinearity and inhomogeneous term and obtained the
exponential attractor in L2(Ω), H1

0 (Ω), L2p−2(Ω), respectively.
As far as we know, there are few studies on the dynamical property of long time behavior for fractional

PDEs in the literature due to the difficulties caused from the nonlocal nature of fractional derivatives. The
main purpose of this paper is to establish the dissipativity of a class of nonlinear time fractional PDEs
and to develop numerical methods which can inherit this property. The main feature of dissipative systems
is the presence of mechanisms of energy dissipation, which can lead to quite complicated limit regimes
and structures [11]. The models of dissipative differential equations often arise in the fields of physics
and engineering; refer e.g., to [1,11] for details. The dissipativity and contractivity of fractional ordinary
differential equations and fractional functional differential equations were recently developed in [13,14]. The
research on the long time behavior for time fractional differential equations is further studied in this article.

Generally speaking, the long time decay rate of classical integer-order differential equations is exponential
while fractional differential equations is often polynomial. This is an important distinction between the
integer-order differential equations and the fractional differential equations. This fact can be primarily
seen from the solution of the classical linear diffusion equation and the corresponding fractional version.
Consider the one dimension classical diffusion equation ut = uxx for t > 0 and x ∈ Ω , and subject to the
initial value u(x, 0) = u0 and homogeneous boundary condition u(x, t) = 0, x ∈ ∂Ω . Then the solution
is u(x, t) =

∑∞
j=0e

−λjt⟨ϕj , u0⟩ϕj , where {ϕj}∞
j=0 and {λj}∞

j=0 are the eigenfunctions and eigenvalues of
Laplace operator ∆. This implies the well-known long time exponential decay rate of the solution u(x, t).
But for the fractional counterpart ∂α

t u = uxx with the same initial/boundary conditions, the solution
becomes u(x, t) =

∑∞
j=0Eα,1(−λjt

α)⟨ϕj , u0⟩ϕj , where Eα,1 is the generalized Mittag-Leffler function with
the property |Eα,β(z)| ≤ C

1+|z| , which indicates that ∥u(x, t)∥2
L2(Ω) =

∑∞
j=0 | (ϕj , u0)Eα,1(−λjt

α)|2 ≤
C1∥u0∥2

L2(Ω)
t2α . It means that the solution of fractional subdiffusion equation has the long time polynomial

decay rate, i.e., u(x, t) = O(t−α) as t → +∞. The specific details can be found in [15]. Thus, the fractional
subdiffusion equation often has much slower speed than classical diffusion and has a long tail.
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