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Abstract

A numerical continuation method is developed to follow time-periodic travelling-wave solutions of both local
and non-local evolution partial differential equations (PDEs). It is found that the equation for the speed of
the moving coordinate can be derived naturally from the governing equations together with the condition
that breaks the translational symmetry. The derived system of equations allows one to follow the branch
of travelling-wave solutions as well as solutions that are time-periodic in a frame of reference travelling
at a constant speed. Finally, we show as an example the bifurcation and stability analysis of single and
double-pulse waves in long-wave models of electrified falling films.
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1. Introduction

We present a novel numerical continuation method which can be used to explore solutions of evolution
equations with translational invariance. The method can be used to construct detailed bifurcation diagrams
that include travelling wave solutions and their bound states as well as pulsating travelling wave solutions.
Travelling waves are stationary in a frame travelling at constant speed. Pulsating travelling waves are
time-periodic in a frame of reference travelling at an appropriate constant speed. An appropriate condition
must be imposed to break the translational invariance. Normally there is also another symmetry associated
with the fact that a new solution can be created from a given travelling wave solution by altering its
volume. By treating the evolution equation in a moving frame as an infinite-dimensional dynamical system,
steady states and time-periodic states can be obtained as fixed points and periodic orbits of this dynamical
system. The speed of the moving frame is one of the unknowns and it can be eliminated by using the
translational symmetry-breaking condition. Consequently we can exploit existing continuation methods
for infinite-dimensional dynamical systems to explore the bifurcation structure for the evolution equation.
A similar technique was developed by Lin et al. [1] to study the motion of a liquid film on the outside of a
horizontal rotating cylinder; in this case there is no translational symmetry due to gravity. In the present
work we apply our new continuation method to the particular case of a thin liquid film flowing down an
inclined plane in the presence of an electric field.

The description of the method is presented in Sec. 2 and in Sec. 3 we present our results including
detailed bifurcation diagrams and time-periodic solutions. Finally in Sec. 4 we summarise our findings.

2. Numerical continuation of solutions of evolution equations
Consider the general one-dimensional evolution equation
Oih = 0, (F[h]), (1)
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