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a b s t r a c t

In this paper, the higher-order nonlinear Schrödinger equation, which can be
widely used to describe the dynamics of the ultrashort pulses in optical fibers,
is under investigation. By means of the modified Darboux transformation, the
hierarchies of breather wave and rogue wave solutions are generated from the trivial
solution. Furthermore, the main characteristics of the breather and rogue waves are
graphically discussed. The results show that the extreme behavior of the breather
wave yields the rogue wave for the higher-order nonlinear Schrödinger equation.
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1. Introduction

As we well know rogue waves (RWs) (alias freak waves, monster waves and abnormal waves etc.) are
notorious for causing disastrous consequences in the ocean [1], and can appear in the shallow waters (or the
deep ocean) [2,3]. A remarkable feature of the wave is that they “suddenly come from nowhere and disappear
without a trace as the time evolves”, and it only has a very short period of time before they attack a ship.
Lately, RWs have drawn more and more experimental and theoretical attention in some related fields such
as plasmas physics, optical fibers, Bose–Einstein condensates (BECs), finance and other fields [4–12]. The
first mathematical model for describing RWs is the focusing nonlinear Schrödinger (FNLS) equation [13–16]

iut + uxx + 2u|u|2 = 0, (1.1)
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which can arise in many physical settings and widely describe the phenomenon of envelope solitons [17,18].
Recently, by employing Darboux transformation (DT) and Hirota’s bilinear (HB) method etc., [19–33], there
have been a number of studies to investigate exact solutions of other systems.

The nonlinear Schrödinger (NLS) equation is well-known to be an important integrable equation in
mathematical physics. There are many physical contexts where the NLS equation often appears. For instance,
the NLS equation can be widely used to describe the weakly nonlinear surface wave in deep water. Besides,
the NLS equation can model the soliton propagation in optical fibers where only the group velocity dispersion
and the self-phase modulation effects are considered. However, for ultrashort pulse in optical fibers, the effects
of the higher-order dispersion, the self-steepening and the stimulated Raman scattering should be taken into
account. Nevertheless, it has been shown recently that all the higher-order terms are directly connected to
the generalized NLS equation that is widely applied for ultrashort pulse propagation in optical fibers [34,35].
Therefore, in this paper, we mainly focus on the higher-order nonlinear Schrödinger (HNLS) equation [36]

iqx + α2K2(q) − iα3K3(q) + α4K4(q) − iα5K5(q) = 0, (1.2)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K2 = qtt + 2q|q|2,

K3 = qttt + 6qt|q|2,

K4 = qtttt + 8|q|2qtt + 6|q|4q + 4|qt|2q + 6q̄q2
t + 2q2q̄tt,

K5 = qttttt + 10|q|2qttt + 10
(

q|qt|2
)

t
+ 20q̄qtqtt + 30|q|4qt,

(1.3)

with u = u(x, t) is a complex-valued function and αi(i = 2, 3, 4, 5) are all real constants. Taking α2 = 1
and α3 = α4 = α5 = 0 in Eq.(1.2), Eq.(1.2) can be reduced to the standard NLS equation (1.1). Then by
restricting α2 = 1 and α3 = α4 = α5 = 0, the rogue wave and breather wave solutions of the HNLS equation
(1.2) can be reduced to those of the standard NLS equation (1.1).

Many mathematical physicists have studied the particular cases of Eq. (1.2). To the best of authors’
knowledge, there are very few studies on (1.2). Based on symbolic calculation methods [37–48], The primary
purpose of the present article is to employ a direct method (i.e., modified Darboux transformation (mDT))
to construct the breather and rogue wave solutions of Eq. (1.2). Additionally, the dynamic behaviors of the
solutions are also considered by choosing appropriate parameters.

The structure of this paper is given as below. In Section 2, the breather wave solutions of Eq. (1.2) are
obtained by using mDT. In Section 3, the Taylor expansion is used to explicitly derive the rogue wave
solutions of Eq. (1.2). Finally, some conclusions and discussions are provided.

2. Breather wave solutions

Based on the results in [36], we take the trivial solution as a plane wave u0 = exp(2(α2 + 3α4)) and
restrict λ as purely imaginary. The general form of the first-order breather solution reads

q
[1]
bw =

[
k3 cosh(V x) + 2iδk sinh(V x)

2k cosh(V x) − δ cos(k(t + Vbx)) − 1
]

exp(ωx), (2.1)

where

V = 2δ
[
α2 − α4

(
k2 − 6

)]
, ω = 2(α2 + 3α4),

Vb = α5
(
k4 − 10k2 + 30

)
, δ = k

√
4 − k2

2 . (2.2)
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