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a b s t r a c t

In this note, we rigorously prove the relaxation limit of the Maxwell–Stefan system
to a system of heat equations when all binary diffusion coefficients tend to the same
positive value.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The Maxwell–Stefan equations have been written in the nineteenth century [1,2], but the interest in
their rigorous mathematical study is very recent and not yet complete. After some works, mainly devoted
to the matrix formulation of the gradient–flux relationships and described in [3], the study of existence
and uniqueness has been carried out in [4–9], the formal derivation of multicomponent diffusion equations
from the Boltzmann system has been investigated in [10–15] and some numerical discretizations of the
Maxwell–Stefan system have been proposed in [5,16].

Despite the advances of the last years, the aforementioned results are far to be complete and many
questions are still waiting for a satisfactory answer. Among them, we cite the rigorous study of the relaxation
of the Maxwell–Stefan system, under the condition of equimolar diffusion, to a system of heat equations
when all binary diffusion coefficients tend to the same positive constant value. In this note, we intend to
give a contribution on this last question and fill in the gap in the literature.
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2. The problem and the main result

Let Ω ⊂ Rd (d ∈ N) be a bounded domain with regular boundary of class C2 and ε > 0. Consider
a collection of ε-dependent strictly positive and symmetric coefficients kε

ij (i.e. kε
ij = kε

ji > 0 for all
i, j = 1, . . . , I ∈ N).

The Maxwell–Stefan equations describe a gaseous mixture composed of I ≥ 3 interacting species. The
cross-diffusion relationships link the ε-dependent unknown densities and fluxes (cε

i , Jε
i ), i = 1, . . . , I ∈ N,

between themselves: ⎧⎨⎩
∂tc

ε
i + ∇x · Jε

i = 0, (t, x) ∈ R+ × Ω

∇xcε
i = −

∑
j ̸=i

kε
ij(cε

jJε
i − cε

i Jε
j ). (2.1)

Moreover, the fluxes satisfy the equimolar diffusion relationship
I∑

i=1
Jε

i = 0. (2.2)

The ε-dependent coefficients kε
ij represent the set of binary diffusion coefficients of the gaseous mixture

whose behavior is described by the Maxwell–Stefan equations (2.1). Note that the diagonal coefficients kε
ii

(i = 1, . . . , I) play no role in the system.
System (2.1) is supplemented with appropriate initial and boundary conditions. In what follows, we

suppose that the solution of (2.1) satisfies homogeneous Neumann boundary conditions, so that we have:

(cε
1(0, x), . . . , cε

I(0, x)) = (cin
1 (x), . . . , cin

I (x)) ∈ (L∞(Ω))I ,

Jε
i (t, x) · nx = 0, (t, x) ∈ (0, ∞) × ∂Ω , i = 1, . . . , I,

(2.3)

where nx ∈ Sd−1 is the outward normal unit vector to the domain Ω starting from a given point x ∈ ∂Ω .
Since the Maxwell–Stefan system (2.1) is written in terms of molar fractions, we assume that all cin

i ≥ 0 and
I∑

i=1
cin

i (x) = 1.

Because of the symmetry of the binary diffusion coefficients, it is easy to see, from (2.1) and the equimolar
diffusion condition (2.2), that

I∑
i=1

cε
i (t, x) = 1 (2.4)

for a.e. (t, x) ∈ R+ × Ω . When all the binary diffusion coefficients are equal (i.e. when kε
ij = κ for all i, j),

it is easy to see that the Maxwell–Stefan equations (2.1), together with Eqs. (2.2) and (2.4), are equivalent
to a system of heat equations for cε

i (t, x). Indeed, thanks to the equimolar diffusion condition, we have that

Jε
i = −

∑
j ̸=i

Jε
j

and hence, from (2.4) and the second relationship in (2.1), we deduce that

Jε
i = − 1

κ
∇xcε

i

for all i = 1, . . . , I, which is the standard form of Fick’s law [17,18]. It leads, thanks to the first equation in
(2.1), to the system of heat equations

∂tc
ε
i = 1

κ
∆xcε

i , i = 1, . . . , I, (2.5)
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