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a b s t r a c t

A simulation formula to generate stationary multivariate stochastic processes is derived from the
Fourier–Stieltjes integral of spectral representation. It is proved that the proposed algorithm generates
ergodic sample functions in themean value and in the correlation when the sample length is equal to one
period (the generated sample functions are periodic). The algorithm is very efficient computationally since
it takes advantage of the fast Fourier transform technique. The simulation of longitudinal wind velocity
fluctuations and the simulation of longitudinal and vertical wind fluctuating components on a bridge deck
are performed. It has been noted that there are good agreements between the temporal and target auto-
/cross-correlation functions of simulated wind velocities.

© 2011 Published by Elsevier Ltd

1. Introduction

The time-domain approach based onMonte Carlomethodology
appears be very suitable for the solution of certain problems in
stochastic mechanics involving nonlinearity, stochastic stability,
parametric excitation, etc. One of the most important steps of a
Monte Carlo time-domain simulation is to generate the sample
functions of the stochastic processes, fields, or waves in the
problem.

Although there are now many methods available to simulate
such multivariate stochastic fields [1], spectral representation
methods appear to be most widely used because of their versatil-
ity and robustness, and they are discussed in this paper. The basic
method for analyzing a one-dimensional, one-variate Gaussian
process appeared in the 1950s. To our knowledge, Shinozuka
[2,3]was the foremost personwho applied the spectral representa-
tion method for simulation purposes including multidimensional,
multivariate, and nonstationary cases. Yang [4] showed that the
fast Fourier transform (FFT) technique could be used to improve
the computational efficiency of the spectral representation algo-
rithm dramatically, and proposed a formula to simulate random
envelope processes. Shinozuka [5] extended the application of the
FFT technique to multidimensional cases. In 1996, Deodatis [6]
further extended the spectral representation method to generate
ergodic sample functions of multivariate stochastic processes.

∗ Corresponding author.
E-mail address: qsding@tongji.edu.cn (Q. Ding).

Moreover, several review papers on the subject of simulation using
the spectral representationmethodwerewritten by Shinozuka [7],
and Shinozuka and Deodatis [8].

The spectral representationmethod has been further developed
in the actual application of simulation of wind fields, earthquake
waves, etc. [9–17]. Through introducing an explicit form of the
Cholesky decomposition of a special power spectrumdensity (PSD)
matrix, Yang [13] and Cao and Xiang [14] greatly improved the
efficiency of Shinozuka’s and Deodatis’ methods respectively for
simulating the wind velocity along the horizontal axis of bridge
decks. Although the Deodatis method can produce unconditionally
stable and satisfactory results, it is computationally expensive due
to the repetitive decomposition of the power density matrix when
a number of randomprocesses are to be simulated.Meanwhile, the
improvement to the Deodatis method made by Cao and Xiang [14]
has a severe restriction on the simulated stochastic field: both the
auto-spectral power spectra at simulated points and their spacing
must be identical.

In this paper, an efficient simulation formula to generate
stationary multivariate stochastic processes is derived from the
Fourier–Stieltjes integral of spectral representation. The proposed
algorithm generates ergodic sample functions in the mean value
and in the correlation when the sample length is equal to one pe-
riod. The algorithm is very efficient computationally since it takes
advantage of the fast Fourier transform technique. Moreover, the
simulation of longitudinal wind velocity fluctuations and the sim-
ulation of longitudinal and vertical wind fluctuating components
on a horizontal bridge deck are performed in order to demonstrate
the capability and efficiency of the proposed algorithm.
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2. Simulation formula

Consider a set of n stationary stochastic processes {X0
j (t)} (j =

1, 2, . . . , n) with their mean values being zero, where the super-
script 0 denotes the target function. The cross-correlation matrix
R0(τ ) is given by

R0(τ ) =


R0
11(τ ) R0

12(τ ) · · · R0
1n(τ )

R0
21(τ ) R0

22(τ ) · · · R0
2n(τ )

...
...

. . .
...

R0
n1(τ ) R0

n2(τ ) · · · R0
nn(τ )

 (1)

and the two-sided cross-spectral density matrix S0(ω) is given by

S0(ω) =


S011(ω) S012(ω) · · · S01n(ω)

S021(ω) S022(ω) · · · S02n(ω)
...

...
. . .

...

S0n1(ω) S0n2(ω) · · · S0nn(ω)

 . (2)

The elements of the cross-correlationmatrix are related to the cor-
responding elements of the cross-spectral density matrix through
the Wiener–Khintchine transformation

S0jk(ω) =
1
2π

∫
∞

−∞

R0
jk(τ )e−iωτdτ , j, k = 1, 2, . . . , n (3a)

R0
jk(τ ) =

∫
∞

−∞

S0jk(ω)eiωτdω, j, k = 1, 2, . . . , n. (3b)

For actual stochastic processes, the auto-spectral density function
is a real and nonnegative function of ω and the cross-spectral den-
sity function is a generally complex function of ω. The following
relations are valid:

S0jj(ω) = S0jj(−ω), S0jk(ω) = S0∗jk (−ω),

S0jk(ω) = S0∗kj (ω)
, (4)

where j, k = 1, 2, . . . , n, and the asterisk denotes the complex
conjugate. Thus the cross-spectral density matrix S0(ω) is Hermi-
tian. When the simulated stochastic processes are independent,
S0(ω) is usually nonsingular. Thematrix S0(ω) can be decomposed
into the following format:

S0(ω) = H∗(ω)HT (ω) (5)

H(ω) =

H11(ω) 0 · · · 0
H21(ω) H22(ω) · · · 0

· · · · · · · · · · · ·

Hn1(ω) Hn2(ω) · · · Hnn(ω)

 ,

where the superscript T denotes the transpose of a matrix;H(ω) is
the lower triangular matrix. This decomposition can be performed
using Cholesky’s method. In general, the diagonal and off-diagonal
elements of the lower triangularmatrix are complex functions ofω.
There are the following relations for the elements of matrix H(ω):

Hjk(ω) = H∗

jk(−ω), j, k = 1, 2, . . . , n, j ≥ k. (6)

If the elements Hjk(ω) are written in polar form as

Hjk(ω) = |Hjk(ω)|eiθjk(ω), j, k = 1, 2, . . . , n, (7)

where θjk(ω) is the complex angle of Hjk(ω) and is given by

θjk(ω) = tan−1

Im [Hjk(ω)]

Re [Hjk(ω)]


(8)

with Im[ ] and Re[ ] being the imaginary and real parts of the com-
plex function in parentheses, respectively, then Eq. (6) is written
equivalently as

|Hjk(ω)| = |Hjk(−ω)|, j, k = 1, 2, . . . , n, j ≥ k (9a)

θjk(ω) = −θjk(−ω), j, k = 1, 2, . . . , n, j ≥ k. (9b)

Based on the spectral analysis, each of the n stochastic processes
may be expressed as a Fourier–Stieltjes integral over a random
Fourier increment [18]:

Xj(t) =

∫
∞

−∞

eiωtdZj(ω), j = 1, 2, . . . , n. (10)

The random increment must satisfy the following orthogonality
conditions:

E[dZj(ω)] = 0

E[dZ∗

j (ω)dZk(ω′)] = 0, ω ≠ ω′ (11)

E[dZ∗

j (ω)dZk(ω)] = Sjk(ω)dω,

where E[·] is the mathematical expectation. It is noted that the
two Fourier increments dZj(ω) and dZk(ω′) are statistically corre-
lated only when ω = ω′. When the simulated processes Xj(t) (j =

1, 2, . . . , n) are real, the relation dZj(−ω) = dZ∗

j (ω) is also re-
quired.

Eq. (10) can be rewritten as

Xj(t) =

∫
∞

0
eiωtdZj(ω) +

∫ 0

−∞

eiωtdZj(ω)

=

∫
∞

0
eiωtdZj(ω) +

∫
∞

0
e−iωtdZj(−ω). (12)

Introducing the relations e−iωt
= (eiωt)∗ and dZj(−ω) = dZ∗

j (ω),
then

Xj(t) =

∫
∞

0
eiωtdZj(ω) +

∫
∞

0
[eiωtdZj(ω)]∗

= 2Re
[∫

∞

0
eiωtdZj(ω)

]
. (13)

The discrete approximation to the random Fourier increment in
Eq. (13) can be constructed in various ways. In the proposed
scheme, the following approximate expression is utilized:

dZj(ω)|ω=ωl ≈ 1Zj(ωl) =

n−
m=1

Hjm(ωl)eiφml
√

1ω (14)

ωl = l1ω + 1ω/2, l = 0, . . . ,N − 1, (15)

where N is a sufficiently large number; 1ω = ωup/N is the fre-
quency increment, ωup is the upper cutoff frequency, with the
condition that, when ω > ωup, the value of S0(ω) is trivial;
φml are sequences of independent random phase angles, uniformly
distributed over the interval [0, 2π ]. Meanwhile, the exponen-
tial term in Eq. (13) is discretized using the double-indexing fre-
quency [6]

eiωt
|ω=ωml = eiωmlt , ωml = l1ω +

m
n

1ω,

l = 0, 1, . . . ,N − 1.
(16)

Inserting Eqs. (14), (16) and (7) into Eq. (13), then

Xj(t) =

∫
∞

−∞

eiωtdZj(ω)

≈ 2Re


N−1−
l=0

n−
m=1

Hjm(ωl)ei(ωmlt+φml)
√

1ω


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