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Classification of global behavior of a system of rational
difference equations

Hideaki Matsunaga∗ and Rina Suzuki

Department of Mathematical Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Abstract: This paper deals with a system of rational difference equations

xn+1 =
ayn + b

cyn + d
, yn+1 =

axn + b

cxn + d
, n = 0, 1, 2, . . . ,

where a, b, c, d are real numbers with c ̸= 0 and ad− bc ̸= 0. We establish a representation formula
of solutions of the system and classify global behavior of solutions when no initial values belong to
the forbidden set of the system.
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1. Introduction

We consider a system of rational difference equations

xn+1 =
ayn + b

cyn + d
, yn+1 =

axn + b

cxn + d
, n = 0, 1, 2, . . . ,(1)

where parameters a, b, c, d and initial values x0, y0 are real numbers. To avoid degenerate cases,
we will assume throughout this paper that

c ̸= 0 and ad − bc ̸= 0.(2)

Indeed, when c = 0, system (1) is a linear system. Also, when c ̸= 0 and ad − bc = 0, system
(1) is reduced to the trivial relation xn = yn = a/c for n = 1, 2, . . . .

Let {(xn, yn)}∞
n=0 be a solution of (1). In case x0 = y0, we observe that xn = yn for n = 1, 2, . . .

and dynamical behavior of (1) coincides with that of a scalar Riccati difference equation

xn+1 =
axn + b

cxn + d
, n = 0, 1, 2, . . . .(3)

By the substitution xn = zn+1/zn − d/c, equation (3) is reduced to the form

zn+2 − a + d

c
zn+1 +

ad − bc

c2
zn = 0.(4)

In 1955, Brand [1] obtained a classification of global behavior of solutions of (3) by the study of
(4) in detail; see also [2, 7, 8].

In case a = 0 and b = c = d = 1, equation (3) becomes

xn+1 =
1

xn + 1
, n = 0, 1, 2, . . . .(5)

In 2013, Tollu et al. [9] gave the following representation formula of solutions of (5) by using
Fibonacci numbers. Here the Fibonacci sequence {Fn}∞

n=0 is defined by

Fn+2 = Fn+1 + Fn, n = 0, 1, 2, . . .

with F0 = 0 and F1 = 1. For brevity, we put e+ = (−1 +
√

5)/2, e− = (−1 −
√

5)/2.
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