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Abstract

In this paper, we study the existence of subharmonic solutions with prescribed minimal period for a class of
second-order Hamiltonian systems with even potentials. By using the variational methods, we obtain some
new existence theorems which improve some recent results in the literature.
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1. Introduction and main results

We consider the existence of subharmonic solutions with prescribed minimal period for the following
second order Hamiltonian systems

{
ü+ V ′x(t, u) = 0,
u(0) = u(pT ), u̇(0) = u̇(pT ),

(1)

where p ∈ N with p > 1, V ∈ C1(R× RN ,R) and V ′x(t, x) denotes the gradient of V (t, x) in x.
As for the existence of subharmonics with minimal periods for systems (1) the pioneer work should

trace back to [1]. Applying perturbation type techniques, Birkhoff and Lewis established the existence of a
sequence of subharmonics with arbitrarily large minimal period. Using calculus of variations approach, Ra-
binowitz [2] obtained the existence of nonconstant prescribed periodic solutions of (1) by a global approach.
Moreover, Rabinowitz conjectured that system (1) possesses a nonconstant solution with any prescribed
minimal period under his conditions. From then on, a vast literature on the minimal period problem for
Hamiltonian systems via the critical point theory has amassed, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
and references therein.

Especially, by using the estimate of the energy (the value of the functional associated with the problem)
of a solution in terms of the minimal period of the solution, Wang, Wang and Shi [13] obtained explicit
sufficient conditions for the existence of subharmonic solutions of (1). These conditions are very easy to
check. Specially, V (t, x) is even-typed, that is, V (−t,−x) = V (t, x) for any (t, x) ∈ R×RN . Moreover, V is
subquadratic at infinity, that is,

lim
|x|→∞

V (t, x)

|x|2 = 0 uniformly in t. (2)

This approach, initially used in [5], has been successfully applied to the minimal period problem of Hamil-
tonian systems [5, 6, 12, 13, 15].
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