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a b s t r a c t

This paper derives a representation of a solution to the initial value problem for a
linear fractional delay differential equation with Riemann–Liouville derivative. We
apply the method of variation of constants to obtain the representation of a solution
via a delayed Mittag-Leffler type matrix function.
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1. Introduction

Recently, Khusainov and Shuklin [1] and Dibĺık and Khusainov [2,3] introduce a new concept, delayed
exponential matrix function, which is used to seek a representation of a solution to a linear time-invariant
continuous/discrete delay equation. For more contributions of the representation of solutions, the stability,
and the control theory for linear time-invariant continuous/discrete delay systems, we refer to [4–9] and the
references.

Inspired by [7,8], we seek a representation of a solution to a linear fractional delay differential equation
with Riemann–Liouville derivative whose the initial condition involving a singular kernel that is different
from the standard initial condition for a Caputo fractional delay differential equation.

In this paper, we study a fractional delay differential equation of the form:⎧⎨⎩
(Dα

−τ+y)(x) = By(x − τ) + f(x), B ∈ Rn×n, x ∈ (0, T ], τ > 0,

y(x) = ω(x), ω(x) ∈ Rn − τ ≤ x ≤ 0,
(I1−α

−τ+y)(−τ+) = ω(−τ), ω(−τ) ∈ Rn,
(1)
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where Dα
−τ+y denotes the Riemann–Liouville derivative of order α ∈ (0, 1) (see Definition 2.1), I1−α

−τ+y

denotes the Riemann–Liouville fractional integral of order 1 − α (see Definition 2.2), T = k∗τ for a fixed
k∗ ∈ N+ := {1, 2, . . .}, τ is a fixed delay time, f ∈ C([−τ, T ],Rn), and ω is an arbitrary Riemann–Liouville
differentiable vector function, i.e., Dα

−τ+ω exists.
The main contributions are stated as follows.
We find a fundamental matrix for homogeneous problem of (3) and then derive its general solution. Next,

we derive a special solution for (1) with zero initial condition. Finally, we give a representation of a solution
of (1) via the superposition principle.

2. Preliminaries

Let a, b ∈ R, a < b and C((a, b],Rn) be the Banach space of vector-valued continuous function from (a, b]
into Rn. Let Θ and I be the zero and identity matrices, respectively.

We recall some definitions and lemmas as follows.

Definition 2.1 (See [10]). The Riemann–Liouville derivative of order 0 < α < 1 for a function
f : [a, ∞) → R can be written as (Dα

a+y)(x) = 1
Γ(1−α)

d
dx

∫ x

a
(x − t)−αy(t)dt, x > a.

Definition 2.2 (See [10]). The Riemann–Liouville fractional integral of order 0 < α < 1 for a function
f : [a, ∞) → R can be written as (Iα

a+y)(x) = 1
Γ(α)

∫ x

a
(x − t)α−1y(t)dt, x > a.

Definition 2.3 (See [7, Definition 2.5]). Set 0 < α < 1 and β > 0. Delayed two parameters Mittag-Leffler
type matrix ZB·α

τ,β : R → Rn×n is defined by

ZBxα

τ,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Θ , − ∞ < x ≤ −τ,

I
(τ + x)α−1

Γ (β) − τ < x ≤ 0,

I
(τ + x)α−1

Γ (β) + B
x2α−1

Γ (α + β) + B2 (x − τ)3α−1

Γ (2α + β) + · · · + Bk (x − (k − 1)τ)(k+1)α−1

Γ (kα + β) ,

(k − 1)τ < x ≤ kτ, k ∈ N+.

(2)

Lemma 2.4 (See [7, Lemma 2.6]). For any (k − 1)τ < x ≤ kτ, 0 ≤ s ≤ t and k ∈ N+ is a fixed
number, we have

∫ x

(k−1)τ+s
(x − t)−α(t − (k − 1)τ − s)kα−1dt = (x − (k − 1)τ − s)(k−1)αB[1 − α, kα], where

B[ξ, η] =
∫ 1

0 sξ−1(1 − s)η−1ds is a Beta function.

Lemma 2.5 (See [8, Lemma 2.5]). For any (k − 1)τ < x ≤ kτ and k ∈ N+, we have
∫ x

(k−1)τ
(x − t)−α(t −

(k − 1)τ)(k+1)α−1dt = (x − (k − 1)τ)kαB[1 − α, (k + 1)α].

Lemma 2.6. Let (k − 1)τ < x ≤ kτ, − τ ≤ s ≤ t and k ∈ N+ is a fixed number, we have∫ x

s
(x − t)−αZB(t−τ−s)α

τ,α dt =
∑k

i=0
∫ x

iτ+s
(x − t)−αBi (t−iτ−s)(i+1)α−1

Γ(iα+α) dt.

Proof. The proof is similar to [7, Lemma 2.7], so we omit it here. □
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