Accepted Manuscript

Virtual element method for simplified friction problem

Fei Wang, Huayi Wei

PII: \quad S0893-9659(18)30179-4
DOI: https://doi.org/10.1016/j.aml.2018.06.002
Reference: AML 5536
To appear in: Applied Mathematics Letters

Received date: 26 February 2018
Revised date: 2 June 2018
Accepted date: 3 June 2018

Please cite this article as: F. Wang, H. Wei, Virtual element method for simplified friction problem, Appl. Math. Lett. (2018), https://doi.org/10.1016/j.aml.2018.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Virtual Element Method for Simplified Friction Problem

Fei Wang ${ }^{1}$ and Huayi Wei ${ }^{2}$

Abstract

This work aims at studying the virtual element method (VEM) to solve a simplified friction problem, which is a typical elliptic variational inequality of the second kind. An optimal error estimate is derived in the H^{1} norm for the lowest-order VEM. A numerical example is reported to demonstrate the theoretically predicted convergence order.

Keywords. Variational inequality; polygonal meshes; optimal error estimate.
AMS Classification. 65N30, 49J40

1 Introduction

In industry and daily life, friction phenomena between different bodies play an important role in structural and mechanical systems. In this paper, we consider a simplified friction problem, which is a variational inequality of the second kind, featured by the presence of non-differentiable terms in the formulation ([13, $16,4])$. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with a Lipschitz boundary $\Gamma=\partial \Omega$ that is divided into three parts $\bar{\Gamma}_{D}, \bar{\Gamma}_{F}$ and $\bar{\Gamma}_{C}$ with Γ_{D}, Γ_{F} and Γ_{C} relatively open and mutually disjoint such that meas $\left(\Gamma_{C}\right)>0$.
A simplified friction problem. Let $f \in L^{2}(\Omega), g \in L^{2}\left(\Gamma_{F}\right)$, and $\eta \in L^{2}\left(\Gamma_{C}\right)$ with $\eta>0$. The simplified friction problem is: Find $u \in V:=\left\{v \in H^{1}(\Omega), v=0\right.$ on $\left.\Gamma_{D}\right\}$ such that

$$
\begin{equation*}
a(u, v-u)+j(v)-j(u) \geq \ell(v-u) \quad \forall v \in V, \tag{1.1}
\end{equation*}
$$

where

$$
a(u, v)=\int_{\Omega}(\nabla u \cdot \nabla v+u v) d x, \quad \ell(v)=\int_{\Omega} f v d x+\int_{\Gamma_{F}} g v d s, \quad j(v)=\int_{\Gamma_{C}} \eta|v| d s
$$

This simplified friction problem has a unique solution ([13, 4]). By introducing a Lagrangian multiplier $\lambda \in \Lambda=\left\{\lambda \in L^{\infty}\left(\Gamma_{C}\right):|\lambda| \leq 1\right.$ a.e. on $\left.\Gamma_{C}\right\}$, the inequality problem (1.1) can be rewritten as ([4])

$$
\begin{align*}
a(u, v)+\int_{\Gamma_{C}} \eta \lambda v d s=\ell(v) & \forall v \in V \tag{1.2}\\
\lambda u=|u| & \text { a.e. on } \Gamma_{C} . \tag{1.3}
\end{align*}
$$

The Finite element method (FEM) is a natural numerical discretization approach for variational inequalities $[14,9,16,19]$. The classical FEM works on the elements with simple geometries, like triangles and rectangles. Due to the flexibility on constructing the local function space, the discontinuous Galerkin (DG) method can handle very general meshes with hanging nodes, which make them very suitable for $h p$ adaptivity. However, the DG method needs large number of degrees of freedom ($[12,22,23,17,24,25]$). Recently,

[^0]
https://daneshyari.com/en/article/8053437

Download Persian Version:
https://daneshyari.com/article/8053437

Daneshyari.com

[^0]: ${ }^{1}$ School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China. The work of this author was partially supported by the National Natural Science Foundation of China (Grant No. 11771350). Email: feiwang.xjtu@xjtu.edu.cn
 ${ }^{2}$ School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, P. R. China. The work of this author was partially supported by the National Natural Science Foundation of China (Grant No. 91430213) and Hunan Provincial Civil-Military Integration Industrial Development Project. Email: weihuayi@xtu.edu.cn

