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a b s t r a c t

In this paper, Fourier spectral approximation for the time fractional Boussinesq
equation with periodic boundary condition is considered. The space is discretized
by the Fourier spectral method and the Crank–Nicolson scheme is used to discretize
the Caputo time fractional derivative. Stability and convergence analysis of the
numerical method are proven. Some numerical examples are included to testify the
effectiveness of our given method. Based on the presented numerical results, the
Fourier spectral method is shown to be effective for solving the time fractional
Boussinesq equation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the study of fractional integro differential equations applied to physics and other areas
has grown [1–4]. Time fractional Boussinesq equation describing the surface water waves is an important
nonlinear equation. Many researchers have paid much attention to the type of equation. Hosseini and
Ansari [5] solved the Boussinesq equations with the conformable time-fractional derivative analytically
using the well-established modified Kudryashov method. Fractional Lie group method of the time-fractional
Boussinesq equation was proposed in [6].

In this paper, the following time fractional Boussinesq equation [5,7] is considered,

C
0 Dα

t u(x, t) = −uxxxx + uxx + (u2)xx, 0 < t ≤ T, (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), (2)

which describes the surface water waves whose horizontal scale is much larger than the depth of the water.
u(x, t) is a wave function. We first truncate (1)–(2) into a finite computational domain [−L, L] with periodic
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boundary condition. The operator C
0 Dα

t (1 < α < 2) considering the wave diffusion is the time Caputo
fractional derivative defined as [8],

C
0 Dα

t u(t) = 1
Γ (2 − α)

∫ t

0

u(2)(s)ds

(t − s)α−1 . (3)

Spectral methods are very powerful tools for treating numerous types of fractional integral and differential
equations [9–11] because of their high-order accuracy. So far, most research of the time fractional Boussinesq
equation is limited to analytical solutions. In this present paper, we introduce the Fourier spectral method as
an efficient alternative approach to solving this equation. Stability and convergence analysis of the numerical
method are verified.

2. Numerical method

In order to develop a fully discrete form of time derivative, let τ be the time step size and K be a positive
integer with τ = T/K and tk = kτ for k = 0, 1, . . . , K. Take tk−1/2 = ( tk−1+tk

2 ) and uk = u(·, tk). Now we
consider (1) on line (x, tk−1/2), let δtu

k−1/2 = uk−uk−1

τ and uk−1/2 = uk−1+uk

2 . The operator C
0 Dα

t as in [12]
can be discreted by the Crank–Nicolson scheme, that is for any 1 < α < 2, k = 1, 2, . . . , K,

1
2

(
C
0 Dα

t uk + C
0 Dα

t uk−1)
= ∇α

t uk−1/2 + Rα
k , (4)

and

∇α

t uk−1/2 = τ1−α

[
bα

0 δtu
k−1/2 −

k−1∑
j=1

(bα
k−1−j − bα

k−j)δtu
j−1/2 − bα

k−1u0
t

]
, (5)

where bα
j = 1

Γ(3−α) ((j + 1)2−α − j2−α), j = 0, 1, . . . , k − 1 satisfying bα
0 = 1

Γ(3−α) ,
∑k

j=1bα
k−j = k2−α

Γ(3−α) ,∑k−1
j=1 (bα

k−1−j − bα
k−j) + bα

k−1 = 1
Γ(3−α) . The truncation error is given by |Rα

k | ≤ C max
0≤t≤T

⏐⏐⏐⏐⏐ ∂3u(x,t)
∂t3

⏐⏐⏐⏐⏐τ3−α.

Take Ω = (−L, L) and I = (0, T ]. Let C∞
per(Ω) be the set of all restrictions onto Ω of all complex-valued,

periodic, C∞-functions on R. For s as a nonnegative real number, let Hs
per(Ω) be the closure of C∞

per(Ω)
with the norm ∥ · ∥s and semi-norm |·|s. Note that H0

per(Ω) = L2
per(Ω). For a positive integer N , the basis

function space SN = span{eiωπx/L : − N
2 ⩽ ω ⩽ N

2 − 1} can be set. For any function u(x, t), we have

uN (t) =
N/2−1∑

ω=−N/2

ûω(t)eiωπx/L, (6)

where the Fourier coefficients are arranged as ûω = (u, eiωπx/L) = 1
2L

∫
Ω

ue−iωπx/Ldx. Based on the above
results, the fully discrete Fourier spectral approximation for (1)–(2) has a modified scheme as follows: find
uk

N ∈ SN ,

(∇α

t u
k−1/2
N , v) = −(∂xxxxu

k−1/2
N , v) + (∂xxu

k−1/2
N , v) + 1

2(∂xx(F (uk
N ) + F (uk−1

N )), v), ∀v ∈ SN , (7)

and

u0
N = ΠN u0(x), (u0

N )t = ΠN u1(x), (8)

where F (u) = u2, ΠN : L2
per(Ω) → SN is the L2-orthogonal projection [11].
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