# The properties of the solutions of the incompressible flows on an exterior domain 

Jaiok Roh<br>Department of mathematics, Hallym University, Chuncheon, Kangwon-Do, 200-702, Republic of Korea

## A R T I C L E I N F O

## Article history:

Received 6 February 2018
Received in revised form 4 April 2018
Accepted 4 April 2018
Available online 12 April 2018

## Keywords:

Euler equations
Vorticity
Bounded support
Lebesque space


#### Abstract

In this paper, we want to see the properties of the smooth solutions $\mathbf{u}$ of the incompressible flows on an exterior domain $\Omega$ of $R^{2}$. Specially, when the vorticity $\omega=\nabla \times \mathbf{u}$ has a bounded support, with suitable conditions we will show that there exists a constant $C(p, q)$ such that $\|\mathbf{u}\|_{L^{p}(\Omega)} \leq C\|\mathbf{u}\|_{L^{q}(\Omega)}$ for $1<p \leq q \leq \infty$.


© 2018 Elsevier Ltd. All rights reserved.

## 1. Introduction

It is also well known that if a domain $\Omega \subset R^{n}$ is a bounded set then one has

$$
\begin{equation*}
|\Omega|^{-\frac{1}{p}}\|u\|_{L^{p}(\Omega)} \leq|\Omega|^{-\frac{1}{q}}\|u\|_{L^{q}(\Omega)}, \text { for } 1 \leq p<q \leq \infty \tag{1.1}
\end{equation*}
$$

where $u \in L^{q}(\Omega)$. But, generally above inequality is no longer true on an unbounded domain unless $u$ has a bounded support. In this paper, we want to see if we can obtain similar inequality with (1.1) for the solutions of the incompressible flows on unbounded domains when the support of the vorticity is a bounded set. This paper was motivated to study the long time behavior of the solutions for the two dimensional Euler equations. Therefore, for the future work, with the results of this paper we will study the asymptotic behavior of the solutions for the two dimensional Euler equations on an exterior domain. This idea was first initiated by the paper Marchioro [1] that the vorticity $\omega(t)$ of the solutions $\mathbf{u}$ of the two dimensional Euler equations has a bounded support for all finite time when an initial vorticity $\omega_{0}$ has a bounded support.

## 2. Main results

Theorem 2.1. Let $\mathbf{u}(x)$ be the globally smooth enough vector function on an exterior domain $\Omega$ of $R^{2}$ where the curl $\nabla \times \mathbf{u}$ has a bounded support contained in a ball $B(0, K)$. We also assume that $\nabla \cdot \mathbf{u}(x)=0$

[^0]https://doi.org/10.1016/j.aml.2018.04.006
0893-9659/® 2018 Elsevier Ltd. All rights reserved.
for all $x \in \Omega$ and $\mathbf{u}$ vanishes sufficiently rapidly as $|x| \nearrow \infty$. Then, there exists a constant $C(p, q)$ such that
\[

$$
\begin{equation*}
\|\mathbf{u}\|_{L^{p}(\Omega)} \leq C K^{\frac{2}{p}-\frac{2}{q}}\|\mathbf{u}\|_{L^{q}(\Omega)}, \text { for } 1<p<q \leq \infty \tag{2.1}
\end{equation*}
$$

\]

Proof. Let us consider a radial cut-off function $\sigma \in C^{\infty}\left(R^{2}\right)$ such that

$$
\sigma(x)=\sigma(|x|)=0 \quad \text { if }|x|<1, \quad \sigma(x)=\sigma(|x|)=1 \quad \text { if }|x|>2
$$

and $0 \leq \sigma(x)=\sigma(|x|) \leq 1$ for $1<|x|<2$. And, for each $R>0$, we define

$$
\sigma\left(\frac{|x|}{R}\right)=\sigma_{R}(|x|) \in C^{\infty}\left(R^{2}\right) .
$$

One note that $\left\|\nabla \sigma_{R}\right\|_{L^{2}\left(R^{2}\right)}$ is bounded by some constant $\eta$ which is independent to $R$. Now, we define new radial cut-off function $\phi_{r}(x) \in C_{0}^{\infty}\left(R^{2}\right)$,

$$
\phi_{r}(x)=\phi_{r}(|x|)=\sigma\left(\frac{|x|}{K}\right)\left[1-\sigma\left(\frac{|x|}{r}\right)\right], \quad \text { for large } r>3 K
$$

And, by the definition of $\phi_{r}$, we can set as

$$
\begin{equation*}
\mathbf{v}(x)=\int_{R^{2}} N(x-y)\left[\phi_{r}(y)(\nabla \times \mathbf{u})(y)\right] d y=\int_{\Omega} N(x-y)\left[\phi_{r}(y)(\nabla \times \mathbf{u})(y)\right] d y \tag{2.2}
\end{equation*}
$$

where $N$ be the fundamental function of $-\Delta$ on $R^{2}$. We consider $\mathbf{z}$ as $\mathbf{z}=\left(\mathbf{z}_{1}, \mathbf{z}_{2}, 0\right)$ to calculate $\nabla \times \mathbf{z}$ and denote $\nabla \times \mathbf{z}$ as $(\nabla \times \mathbf{z}) \cdot e_{3}=\frac{\partial \mathbf{z}_{2}}{\partial x}-\frac{\partial \mathbf{z}_{1}}{\partial y}$ without any more comments. Then, since $\nabla \cdot \mathbf{u}=0$, due to

$$
\nabla \times \nabla \times F=\nabla(\nabla \cdot F)-\nabla^{2} F \quad \text { and } \quad \phi_{r}(\nabla \times \mathbf{u}(y))=\nabla \times\left(\phi_{r} \mathbf{u}\right)-\left(\nabla \phi_{r}\right) \times \mathbf{u}
$$

we have from (2.2) that

$$
\begin{aligned}
\nabla \times \mathbf{v} & =\nabla \times \int_{R^{2}} N(x-y)\left(\nabla \times \phi_{r} \mathbf{u}(y)\right) d y-\nabla \times \int_{R^{2}} N(x-y)\left(\nabla \phi_{r}\right) \times \mathbf{u}(y) d y \\
& =\phi_{r} \mathbf{u}-\nabla \times\left[N *\left(\left(\nabla \phi_{r}\right) \times \mathbf{u}\right)\right]+\nabla\left[N *\left(\mathbf{u} \cdot \nabla \phi_{r}\right)\right] .
\end{aligned}
$$

Since $\nabla \times \mathbf{v}=0$ from the definition of $\phi_{r}$, we obtain

$$
\begin{equation*}
\phi_{r} \mathbf{u}=\nabla \times\left[N *\left(\left(\nabla \phi_{r}\right) \times \mathbf{u}\right)\right]-\nabla\left[N *\left(\mathbf{u} \cdot \nabla \phi_{r}\right)\right] . \tag{2.3}
\end{equation*}
$$

Now, we remind the Sobolev's Theorem (Theorem 9.3 in page 91 of [2]): For $\Psi(x)=\int_{R^{n}} K(x, y) f(y) d y$ where $K(x, y)=\frac{1}{|x-y|^{\lambda}}, \lambda>0$, if $f \in L^{q}\left(R^{n}\right), 1<q<\infty$ and $\lambda>n\left(1-\frac{1}{q}\right)$ then we have $c(q, n, \lambda)$ such that

$$
\begin{equation*}
\|\Psi\|_{L^{s}} \leq c\|f\|_{L^{q}}, \quad \text { for } \frac{1}{s}=\frac{\lambda}{n}+\frac{1}{q}-1 . \tag{2.4}
\end{equation*}
$$

In this proof we denote

$$
\begin{aligned}
& \Omega_{0}=\left\{x \in R^{2}:|x| \leq K\right\}, \quad \Omega_{1}=\left\{x \in R^{2}: K \leq|x| \leq 2 K\right\}, \\
& \Omega_{2}=\left\{x \in R^{2}:|x|>2 K\right\}, \quad \Omega_{3}=\Omega_{0} \cup \Omega_{1} .
\end{aligned}
$$

Since $\left\|\nabla \phi_{r}\right\|_{L^{2}\left(R^{2}\right)} \leq 2 \eta$ for some $\eta>0$, due to (2.3) and (2.4), we obtain

$$
\begin{equation*}
\left\|\phi_{r} \mathbf{u}\right\|_{L^{p}\left(R^{2}\right)} \leq C_{p}\left(\|\mathbf{u}\|_{L^{p}\left(\Omega_{1}\right)}+\|\mathbf{u}\|_{L^{p}\left(\Omega_{r}\right)}\right), \text { for } 2<p<\infty \tag{2.5}
\end{equation*}
$$

# https://daneshyari.com/en/article/8053466 

Download Persian Version:

## https://daneshyari.com/article/8053466

## Daneshyari.com


[^0]:    E-mail address: joroh@hallym.ac.kr.

