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a b s t r a c t

System reliability design optimization models have been developed for systems exposed to changing and
diverse stress and usage conditions. Uncertainty is addressed through defining a future operating en-
vironment where component stresses have shifted or changed for different future usage scenarios. Due
to unplanned variations or changing environments and operating stresses, component and system re-
liability often cannot be predicted or estimated without uncertainty. Component reliability can vary due
to a relative increase/decrease of stresses or operating conditions. The uncertain parameters of stresses
have been incorporated directly into the new decision-making model. Risk analysis perspectives, in-
cluding risk-neutral and risk-averse, are considered as system reliability objective functions. A regret
function is defined, and minimization of the maximum regret provides an objective function based on
random future usage stresses. This is an entirely new formulation of the redundancy allocation problem,
but it is a relevant one for some problem domains. The redundancy allocation problem is solved to select
the best design solution when there are multiple choices of components and system-level constraints.
Nonlinear programming and a neighborhood search heuristic method are recommended to obtain the
integer solutions for risk-based formulations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

System reliability optimization problems become more realistic
when considering uncertainty from associated stresses, operating
conditions, etc. for different components within a system. With
changing loads and stresses in the foreseeable future, a reliability
model is useful to predict or determine the impact from these
future usage profiles. This new model pertains to applications
where it is known that stresses or operating conditions of the
system will change, but it is not known the extent of the change,
although possible future outcomes can be defined and
enumerated.

Consider a new system design where decisions must be made
regarding the components to be used, i.e., the number of re-
dundant components and the system architecture. The Re-
dundancy Allocation Problem (RAP) is a well-known problem
solved to determine an optimal system configuration. RAP is al-
ready a difficult problem; however, now we consider that available
component reliability is affected by uncertain future stresses and

usage conditions. Design decisions must be made given there are
multiple future usage conditions or profiles that can occur.

Aircraft launcher and recovery systems provide some of the
motivation to model the anticipated future reliability of compo-
nents or systems [1–3]. These systems must operate at a very high
level of reliability yet it is anticipated that the airplanes using
these systems will be getting heavier due to changing mission
types with more required equipment, and also the distribution of
airplanes using these systems will be shifting (heavier airplanes
will conduct more missions). A particular aircraft launcher or re-
covery system is exposed to a random pattern of different airplane
types, with different characteristics (weights, speeds), creating
important and unique reliability issues.

RAP models are presented in this paper where opportunity loss
or a regret minimization approach is proposed to directly ac-
commodate uncertainty within the component and system relia-
bility functions. The model formulations considering uncertainty
provide additional modeling capabilities and have advantages
when compared to traditional reliability models that do not ac-
count for risk and uncertainty. The model is realistic and can be
applied to various industrial problems, as the uncertainty of sys-
tem configurations becomes a significant issue in industry.
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1.1. Assumptions

� Components and systems have two states (fully functional,
failed).

� Failure times of individual components are independent.
� Component failure times follow parametric Weibull

distributions.
� Component failure time distributions change in response to

different stress levels according to lifetime proportional models
(often known as accelerated failure time models).

� Failed components do not inflict any damage on other compo-
nents, and systems are non-repairable.

� All redundancy is active redundancy. Components fail at the
same rate whether they are a primary or redundant component.

� Operating and usage stress profile will undergo a single shift
from the current profile to a different one.

1.2. Notation

R(x;t) system reliability as a function of design vector x at time t
x (x11, x12, x13, …, xsms)
xij number of identical components for a particular choice

jth to be used in subsystem i
s number of subsystems in a series system
mi number of available component selection types or choi-

ces for subsystem i
U random future usage profile vector, U¼(U1, U2, …, Uc ),

U ∈ {u1, u2, …, uv}
Uk stress factor k (a random variable)
c number of different operating usage and stress factors
ul usage profile vector for future usage l, ul¼ (u1l, u2l, …, ucl)
ukl stress factor k in future usage l
pl probability or likelihood of future usage l, l¼1,2,.,v
v number of future usage scenarios
rij(ul;t) reliability for jth component choice to be used in sub-

system i in future usage l
ηij(ul) Weibull scale parameter of jth component choice in

subsystem i for future usage l
η0ij current Weibull scale parameter for jth component

choice to be used in subsystem i
βij Weibull shape parameter of jth component choice in

subsystem i
αijk sensitivity coefficient of stress factor k for the jth com-

ponent choice in subsystem i
W weight constraint
C cost constraint
wij weight of jth component choice in subsystem i
cij cost of jth component choice in subsystem i

1.3. Redundancy Allocation Problem (RAP)

This research is focused on series-parallel systems with s sub-
systems connected in series. Within each subsystem i, there are
potentially redundant components of different choices connected
in parallel as depicted by the example in Fig. 1. All redundancy is
active redundancy. The numbers in the figure represent the par-
ticular component choice j. The number of identical components
for a particular choice is xij, and all the components are connected
in parallel within each subsystem. In the example in Fig. 1, there
are mi¼5 functionally equivalent component choices for each
subsystem, and ni is the sum of all xij in subsystem i. For example,
there are two identical components of choice 1, one component of
choice 2 for subsystem 1 and three total components (x11¼2,

x12¼1, x13¼x14¼x15¼0, n1¼3); two identical components of
choice 3 for subsystem 2 (x23¼2, x21¼x22¼x24¼x25¼0, n2¼2);
and for subsystem 3, x31¼x32¼x33¼0, x34¼3, x35¼1, n3¼4, and so
on. Components for a subsystem are selected by solving the RAP
subject to system-level cost and weight constraints.

System reliability with deterministic component reliability and
active redundancy is ( ) = ∏ ( − ∏ ( − ( )) )= =R t r tx; 1 1i

s
j
m

ij
x

1 1
i ij where

based on the Weibull distribution, ( )η( ) = −( )βr t texp /ij ij ij . The re-
liability models in this paper are all for applications with active
redundancy (or hot standby) and Weibull distributed component
failure times (with constant stress levels). The Weibull distribution
is a widely applied and flexible distribution, so this is not very
restrictive. On the other hand, an important future extension to
these models will be to make them more general and to apply to
cold-standby redundancy and mixed redundancy types.

RAP considering uncertain conditions was studied by Hada
et al. [2,3]. They evaluated the use of stress covariates for changing
stress profiles for aircraft systems. Component-level methods were
used to model stress functions for future reliability predictions. A
general modeling approach for components with changing future
stress levels was presented by Johnson et al. [1].

To compensate for uncertainty in the RAP, risk minimization
can be considered when selecting a system reliability objective
function. This stochastic optimization problem can be transformed
to an equivalent deterministic problem by defining a future usage
stress profile composed of discrete usage or stress scenarios. A
risk-neutral approach is to maximize the expected value of the
uncertain system reliability. However, if the consequences of low
reliability are very dire or undesirable, it may be too risky to use
the expected value as an objective function. Even if it is unlikely,
the worst or most extreme conditions can occur sometimes, and
for some applications, it is important that the system be maxi-
mally reliable even then. In these cases, it may be advantageous to
use an alternative optimization strategy. The system designer can
adopt a minimax regret with robust decision criteria to address
uncertainty over possible usage scenarios. In this approach, a re-
gret function is defined and the objective is to minimize the
maximum regret given the uncertainty.

For RAP with uncertainty, a decision-maker needs to decide
whether they are risk-neutral or risk-averse. The optimal decision
is generally different for the two formulations, although for same
applications they can be very similar. Given many opportunities,
the risk-neutral decision-maker achieves higher system reliability
more often. However, they may occasionally achieve un-
satisfactorily lower reliability. The risk-averse decision-maker is
concerned with the least desirable solutions even if the probability
is low. The risk-averse decision-maker may have marginally lower
reliability more often, but they will more rarely have very poor
reliability.

For decision-making with an uncertain performance criterion,
the ‘regret’ of a decision can be defined as the relative

Fig. 1. Series-parallel system with multiple choices of components in each
subsystem.
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