Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Global solutions to isothermal system in a divergent nozzle with friction

Yun-guang Lu^{*}

K.K.Chen Institute for Advanced Studies, Hangzhou Normal University, PR China Universidad Industrial de Santander, Colombia

ARTICLE INFO

Article history: Received 27 March 2018 Received in revised form 3 May 2018 Accepted 3 May 2018 Available online 29 May 2018

Keywords: Global L^{∞} solution Isothermal system Friction terms Flux approximation Compensated compactness

ABSTRACT

In this paper, we remove the restriction $A'(x) \ge 0$ in the paper 'Lu (2011)', the restriction $z_0(x) \le 0$ or $w_0(x) \le 0$ in the paper 'Klingenberg and Lu (1997)', and obtain the global existence of entropy solutions to the isothermal gas dynamics system in a divergent nozzle with friction.

 \odot 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we studied the global entropy solutions for the Cauchy problem of isentropic gas dynamics system in a divergent nozzle with a friction, whose physical phenomena called "choking or choked flow", occurs in the nozzle

$$\begin{cases} \rho_t + (\rho u)_x = -\frac{a'(x)}{a(x)}\rho u \\ (\rho u)_t + (\rho u^2 + P(\rho))_x = -\frac{a'(x)}{a(x)}\rho u^2 - \alpha \rho u|u|, \end{cases}$$
(1.1)

with bounded initial date

$$(\rho(x,0), u(x,0)) = (\rho_0(x), u_0(x)), \quad \rho_0(x) \ge 0, \tag{1.2}$$

where ρ is the density of gas, u the velocity, $P = P(\rho)$ the pressure, a(x) is a slowly variable cross section area at x in the nozzle and α denotes a friction constant. For the polytropic gas, P takes the special form $P(\rho) = \frac{1}{2}\rho^{\gamma}$, where $\gamma > 1$ is the adiabatic exponent and for the isothermal gas, $\gamma = 1$. System (1.1) is of

 $\label{eq:https://doi.org/10.1016/j.aml.2018.05.006} \\ 0893-9659/ © 2018 Elsevier Ltd. All rights reserved.$

Applied Mathematics

Letters

^{*} Correspondence to: K.K.Chen Institute for Advanced Studies, Hangzhou Normal University, PR China. E-mail address: ylu2005@ustc.edu.cn.

interest because resonance occurs. This means there is a coincidence of wave speeds from different families of waves (See [1–4] and the references cited therein for the details).

By simple calculations, two eigenvalues of system (1.1) are

$$\lambda_1 = \frac{m}{\rho} - \sqrt{P'(\rho)}, \quad \lambda_2 = \frac{m}{\rho} + \sqrt{P'(\rho)} \tag{1.3}$$

with corresponding Riemann invariants

$$z(u,v) = \int_0^{\rho} \frac{\sqrt{P'(s)}}{s} ds - \frac{m}{\rho}, \quad w(u,v) = \int_0^{\rho} \frac{\sqrt{P'(s)}}{s} ds + \frac{m}{\rho}, \tag{1.4}$$

where $m = \rho u$.

When a'(x) = 0, (1.1) is the river flow equations, a shallow-water model describing the vertical depth ρ and mean velocity u, where $\alpha \rho u |u|$ corresponds physically to a friction term, and its global, bounded solutions were obtained in [5].

When $\alpha = 0$, i.e., the nozzle flow without friction, system (1.1) was well studied in [6–8] for the polytropic gas ($\gamma > 1$), and in [9] for the isothermal gas ($\gamma = 1$). In [9], a strong technique condition $A'(x) \ge 0$ was imposed when the author used the maximum principle to study the positive lower bound of the density ρ (the bound depends on the viscosity coefficient ε).

Since the super-linear source terms in (1.1), when we prove the global existence, the main difficulty is to obtain L^{∞} estimates, of viscosity solutions, independent of the viscosity perturbation constant ε . With the help of the condition $z_0(x) \leq 0$ or $w_0(x) \leq 0$, the L^{∞} bound of $(\rho^{\varepsilon}, m^{\varepsilon})$ was obtained in [10,11] for the polytropic gas $\gamma > 1$.

Since the case of $\gamma = 1$ is different from that of $\gamma > 1$, in this paper, we remove the conditions $z_0(x) \leq 0$ or $w_0(x) \leq 0$ in [10,11], and $A'(x) \geq 0$ for the isothermal case $P(\rho) = \rho$ in [9], and prove the global existence of weak solutions for the Cauchy problem (1.1)–(1.2) for general bounded initial date. The main result is given in the following

Theorem 1.1. Let $P(\rho) = \rho, 0 < a_L \leq a(x) \leq M$ for x in any compact set $x \in (-L, L), A(x) = -\frac{a'(x)}{a(x)} \in C^1(\mathbb{R})$ and $|A(x)| \leq M$, where M, a_L are positive constants, but a_L could depend on L. Then the Cauchy problem (1.1)–(1.2) has a bounded weak solution (ρ, u) which satisfies system (1.1) in the sense of distributions and

$$\int_0^\infty \int_{-\infty}^\infty \eta(\rho, m)\phi_t + q(\rho, m)\phi_x + A(x)(\eta(\rho, m)_\rho\rho u + \eta(\rho, m)_m\rho u^2)\phi dxdt \ge 0,$$
(1.5)

where (η, q) is a pair of entropy-entropy flux of system (1.1), η is convex, and $\phi \in C_0^{\infty}(\mathbb{R} \times \mathbb{R}^+ - \{t = 0\})$ is a positive function.

Remark 1.2. The global existence of symmetrical weak solutions of the isothermal gas dynamics system (1.1) without a friction in the Lagrangian coordinates was well studied in [12-14] by using the Glimm scheme method [15,16].

Remark 1.3. The homogeneous case of isothermal system (1.1) $(a'(x) = 0, \alpha = 0)$ in the Euler coordinates was studied in [17] by using the compensated compactness theory [18].

2. Proof of Theorem 1.1

Let $v = \rho a(x)$, then we may rewrite (1.1) as

$$\begin{cases} v_t + (vu)_x = 0\\ (vu)_t + (vu^2 + v)_x + A(x)v + \alpha vu|u| = 0. \end{cases}$$
(2.1)

Download English Version:

https://daneshyari.com/en/article/8053549

Download Persian Version:

https://daneshyari.com/article/8053549

Daneshyari.com