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a b s t r a c t

The paper considers complex industrial systems with incomplete maintenance history. A corrective
maintenance is performed after the occurrence of a failure and its efficiency is assumed to be imperfect.
In maintenance analysis, the databases are not necessarily complete. Specifically, the observations are
assumed to be window-censored. This situation arises relatively frequently after the purchase of a sec-
ond-hand unit or in the absence of maintenance record during the burn-in phase. The joint assessment of
the wear-out of the system and the maintenance efficiency is investigated under missing data. A review
along with extensions of statistical inference procedures from an observation window are proposed in
the case of perfect and minimal repair using the renewal and Poisson theories, respectively. Virtual age
models are employed to model imperfect repair. In this framework, new estimation procedures are
developed. In particular, maximum likelihood estimation methods are derived for the most classical
virtual age models. The benefits of the new estimation procedures are highlighted by numerical simu-
lations and an application to a real data set.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Maintenance management of industrial systems requires to
make the best use of the past repair records in order to assess the
efficiency of the maintenance actions and the mechanisms of
aging. The resulting decision-making process aims to keep the
system operational for as long as possible and consists in opti-
mizing the preventive maintenance policy, in improving the
maintenance practice and in possibly suggesting a restructuring of
the equipments.

A corrective maintenance (CM) is a set of repair tasks which are
performed after the appearance of a failure. The quality of a
maintenance action is classically assumed to be either perfect or
minimal. A perfect repair restores the system as a new one with
the same generation technology. A minimal repair brings the
system back to operational status, but in the same overall condi-
tion as before the failure. Intermediate configurations are referred
as imperfect repairs [31]. The present study focuses on a well-
spread class of imperfect maintenance models called Virtual Age
Models [25]. In particular, the properties of the most common
virtual age assumptions are investigated: the Brown–Proschan

model [4] and the Arithmetic Reduction of Age models [13].
Estimation procedures, such as the Maximum Likelihood

Method, are well established for virtual age models from the
complete observation of the maintenance process since the launch
of the system. However, it is not uncommon that the data collec-
tion is of poor quality: inappropriate reporting equipment, missing
or lost information, unrecorded events, etc. This situation arises
regularly after the purchase of a second-hand equipment or during
a data migration, particularly from paper documents to digital
sources. In the following, the maintenance process is assumed to
be recorded over an observation window. This configuration is
commonly referred as window-censored process [38], window-
observation process [40] or interval-censored process [24]. The
information at the beginning of the observation can be of multiple
forms: the number of failures before the beginning and the ca-
lendar time at the beginning can be known or unknown. Inference
procedure has been developed for window-observation processes
considering minimal repair [7,36,3] and perfect repair [28,38].
Case studies have been derived for a wide range of practical in-
terests such as water urban networks management [27,39], mili-
tary applications [40], wind turbines [23], medicine [20] and
warranty data analysis [35]. All the estimation methods developed
above are based on either the renewal theory or the non-homo-
geneous Poisson theory, corresponding to perfect and minimal
repair, respectively. Very few developments have been proposed in
the case of imperfect repair. Gasmi et al. [19] investigate the
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situation where the age of the system is set to a known value
different from zero at the beginning of the observation. Two nat-
ural but reductive simplifications are also employed when using
imperfect maintenance models from an observation window: ei-
ther the system is assumed to be new at the beginning [26] or no
repair is assumed to have been performed prior to the beginning
[14].

In this study, a review of the estimation procedures using the
Maximum Likelihood Method with complete observations is firstly
proposed. Each maintenance efficiency is considered: minimal
repair, perfect repair and imperfect repair based on virtual age
assumptions. Secondly, an overview of the estimation methods
from an observation window with minimal and perfect repair is
gathered for the first time and is presented along with multiple
new extensions. Different situations are considered depending on
the knowledge on the system at the beginning of the observation.
Thirdly, new developments in the case of window-censored ob-
servations and virtual age assumptions are outlined. As the com-
putation of the likelihood function strongly depends on the im-
perfect repair model, the estimation procedures are detailed for
the most common virtual age models, such as the Brown–Proschan
model [4] and two Kijima models [25]. In the presence of a small
number of window-censored recurrence data, the gain of the new
estimation methods is important and the quality of the prog-
nostics, such as the estimation of the Remaining Useful Life, can be
enhanced.

The remaining of the paper is organized as follows. In Section 2,
the maximum likelihood method is derived for the classical im-
perfect maintenance models. The context of window-censored
process is introduced. In Sections 3 and 4, a review along with new
generalizations of the maximum likelihood methods is presented
considering minimal and perfect maintenance, respectively. New
developments of estimation procedures for virtual age models
from an observation window are proposed in Section 5. The spe-
cificities of the usual virtual age assumptions are investigated. The
benefits of an appropriate modeling compared to a simplified one
are highlighted in Section 6 based on simulation studies. An ap-
plication to a real data set is provided in Section 7 and emphasizes
the risk of analyzing estimation results from an inaccurate
modeling.

2. General modelling

2.1. Inference with complete information

We consider a simple case of maintenance databases, where
failure and maintenance dates are modeled by a counting process
and there is only corrective maintenance (repair upon failure) in
the past events. The downtime and repair time are assumed to be
negligible, hence the resulting counting process is referred as a
failure process. The complete counting process { } ≥Nt t 0 is such that
Nt is the number of failures of the system in the time interval [ ]t0, .
The complete observations consist of failure times { } ≥Ti i 1 and inter-
failure times { } ≥Xi i 1. The failure process is equivalently character-
ized by the random processes { } ≥Nt t 0, { } ≥Ti i 1 or { } ≥Xi i 1 and their
distributions are given by the failure intensity defined as:

λ∀ ≥ =
Δ

( − = | ) ( )Δ →
+Δ − −t

t
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1
1 1t

t
t t t t

0

where −t and −Nt are the past of the failure process and number
of failures just before t, respectively. The history −t corresponds
to the set of all events which have occurred before t. Before the
first failure, the failure intensity is assumed to be a deterministic
and continuous function of time λ ( )t , called the initial intensity,
which is the failure rate of the first failure time T1. As industrial

systems are supposed to wear out continuously, the initial in-
tensity is traditionally increasing. It is worthwhile to introduce the

cumulative hazard rate function Λ, defined as ∫Λ λ( ) = ( )t u du
t

0
.

The pdf, cdf and reliability function associated with the first time
to failure for a new system are, respectively, f, F and R.

The assumptions on the maintenance efficiency need to be
presented. Three widespread models are considered:

A. Maintenances are minimal. This is known as the As Bad As Old
(ABAO) model, where a repair leaves the system in the same
state as before the failure. The failure process is a Non-Homo-
geneous Poisson Process (NHPP) and its failure intensity is a
function of time: λ λ= ( )tt . The most usual NHPP is the Power
Law Process (PLP) [32] and the initial intensity is defined as a
power of time, similar to a Weibull distribution:

λ αβ α β( ) = > > ( )β−t t 0, 0 21

The likelihood function associated to the observation of the
system during a period [ ]t0, , where n repairs are performed
with failure times τ τ( … ), , n1 , and considering an initial intensity
λ ( )t is:
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B. Maintenances are perfect. This is known as the As Good As New
(AGAN) model, where a repair restores the system as new. The
resulting failure process is a Renewal Process (RP) where the
failure intensity follows λ λ= ( − )−t Tt Nt . The likelihood function
associated with the observation of the system during a period
[ ]t0, , where n repairs are performed with failure times
τ τ( … ), , n1 , where f denotes the pdf of the inter-failure times and
considering an initial intensity λ ( )t :

∏τ τ τ τ( … ) = ( − ) ×
( )

Λ τ
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C. Maintenances are imperfect. Imperfect maintenance models [31]
reflect intermediate situations between minimal and perfect
repair. This study focuses on the most widespread imperfect
maintenance models called virtual age models defined by Kijima
[25]. To define a virtual age model, one needs to define first of all
the effective ages, denoted by a sequence of positive random
variables { } ≥Ai i 0 with =A 00 . Maintenance actions are assumed
to have impact on the system's age, resulting in the effective age
Ai just after the ith maintenance. Moreover, it assumes that after
the ith maintenance, the system behaves as a new one having
survived until Ai without being maintained. The conditional
distributions of inter-failure times are given by:

∀ ≥ ∀ ≥ ( > | … ) = ( > +

| > ) ( )
+i t P X t A X X P Y A t

Y A

1, 0, , , ,
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i i i i

i

1 1

where Y is a random variable with the same distribution as the
first failure time X1. The virtual age of the system at time t
denoted Vt is the age of the system at the last maintenance plus
the time elapsed since = + −− −V A t Tt N Nt t . A virtual age model is
therefore completely defined by a particular sequence of effec-
tive ages { } ≥Ai i 0 and by an initial intensity. The resulting failure
intensity [13] is λ λ= ( − + )− −t T At N Nt t .

Large classes of virtual age models have been presented in
[16,22,25]. The ABAO and the AGAN cases correspond to =A Ti i and
Ai¼0, respectively. More general models have been proposed such as:

� The Arithmetic Reduction of Age model with memory 1 (ARA1,
[13]) is a particular case of Kijima's Type I model [25]. The effect
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