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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF CERTAIN

FORCED THIRD ORDER INTEGRO-DIFFERENTIAL EQUATIONS

WITH δ-LAPLACIAN

SAID R. GRACE AND JOHN R. GRAEF

Abstract. In this paper the authors examine the asymptotic behavior of solutions of a
certain third order forced integro-differential equations with δ-Laplacian. Their main goal
is to investigate whether nonoscillatory solutions behave at infinity like certain nontrivial
nonlinear functions. They apply a technique involving Young’s, Hölder’s, and Gronwall’s
inequalities.

1. Introduction

Consider the third order forced integro-differential equation
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∫ t

c
(t − s)α−1 k(t, s)f(s, x(s))ds = e(t), c ≥ 1, (1.1)

where:

(i) a : [c,∞) → (0,∞) and e : [c,∞) → R are continuous functions;
(ii) k : [c,∞)× [c,∞) → R is continuous and that there is a positive continuous function

b(t) such that

|k(t, s)| ≤ b(t) for all t ≥ s ≥ c;

(iii) f : [c,∞)×R → R is continuous and there is a continuous function h : [c,∞) → (0,∞)
and positive real number γ such that

|f(t, x)| ≤ h(t) |x|γ for x 6= 0 and t ≥ c;

(iv) δ ≥ 1 is the ratio of odd positive integers with δ > γ, and 0 < α < 1;

(v) R(t) =

∫ t

c
a−1/δ(s)ds → ∞ as t → ∞.

We only consider those solutions of equation (1.1) that are continuable and nontrivial in any
neighborhood of ∞. Such a solution is said to be oscillatory if it has arbitrarily large zeros,
and is nonoscillatory otherwise.

In the last few decades, third order differential equations have gained considerably more
attention due to their applications in many engineering and scientific disciplines such as
mathematical models for systems and processes in fields such as physics, mechanics, chemistry,
aerodynamics, and the electrodynamics of complex media. For more details, see for example,
[2, 12, 17, 18, 19, 20, 21, 22].

In the asymptotic theory of nonlinear ordinary differential equations, a classic problem is
to establish conditions for the existence of solutions approaching polynomials of a certain
degree at t → ∞ (see [4, 12, 14, 15, 16, 17, 21, 22]). In the proofs of these kinds of results, a
key role is often played by the well-known Bihari inequality.
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