Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/aml)

Applied Mathematics Letters

www.elsevier.com/locate/aml

Concentration for blow-up solutions of semi-relativistic Hartree equations of critical type

Yanfang Gao, Zhiyong Wang[*](#page-0-0)

Col lege of Mathematics and Informatics & Fujian Key Laboratory of Mathematical Analysis and Applications, Fujian Normal University, Fuzhou, 350117, PR China

a r t i c l e i n f o

Article history: Received 18 January 2018 Received in revised form 18 March 2018 Accepted 18 March 2018 Available online 27 March 2018

Keywords: Semi-relativistic Hartree equation Blow-up Concentration

a b s t r a c t

This paper concerns the semi-relativistic Hartree equation

$$
i\partial_t u = \sqrt{-\Delta + m^2}u - (|\cdot|^{-1} * |u|^2)u
$$

in \mathbb{R}^3 . We prove the concentration results for finite time blow-up solutions with general $H_x^{1/2}(\mathbb{R}^3)$ data, and show the relation between the concentration rate and the blow-up order.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the Cauchy problem of the semi-relativistic Hartree equation with L^2 -critical nonlinearity

$$
\begin{cases} i\partial_t u = \sqrt{-\Delta + m^2}u - (|\cdot|^{-1} * |u|^2)u, & x \in \mathbb{R}^3, \\ u(0, x) = u_0(x) \in H_x^{1/2}(\mathbb{R}^3). \end{cases}
$$
(1)

Here *u* is a complex valued function defined on some spatial-time slab $[0,T) \times \mathbb{R}^3$, $m \geq 0$ is the mass of a particle, $\sqrt{-\Delta+m^2}$ is defined by the symbol $\sqrt{|\xi|^2+m^2}$ in Fourier space, and $*$ stands for convolution in \mathbb{R}^3 .

The equation in [\(1\)](#page-0-1) has been derived as a model describing the mean field dynamics of boson stars [\[1\]](#page--1-0). The well-posedness problems in the energy space $H^{\frac{1}{2}}$ and lower regularity Sobolev spaces $H^s(s \lt \frac{1}{2})$ were considered in $[2-4]$ $[2-4]$. Assume momentarily $m = 0$, then the equation and the L^2 -norm of the initial datum are invariant under the scaling $u_\rho(t,x) = \rho^{3/2} u(\rho t, \rho x)$. For an $H_x^{1/2}(\mathbb{R}^3)$ solution *u*, by a regularization method,

* Corresponding author.

<https://doi.org/10.1016/j.aml.2018.03.020> 0893-9659/© 2018 Elsevier Ltd. All rights reserved.

Applied
Mathematics Letters

E-mail address: wangzhiyong236@163.com (Z. Wang).

it satisfies two conservation laws [\[4\]](#page--1-2):

 E_m

$$
M(u(t)) := \int_{\mathbb{R}^3} |u(t, x)|^2 dx \equiv M(u(0)),
$$

\n
$$
(u(t)) := \frac{1}{2} \int_{-\infty} \bar{u}(t, x) \sqrt{-\Delta + m^2} u(t, x) dx
$$
\n(2)

$$
2 \int_{\mathbb{R}^3} (|\cdot|^{-1} * |u|^2) |u(t, x)|^2 \, \mathrm{d}x \equiv E_m(u(0)). \tag{3}
$$

Here \bar{u} denotes the conjugate of u .

From [\[4\]](#page--1-2), [\(1\)](#page-0-1) is locally well-posed in $H_x^{1/2}(\mathbb{R}^3)$ and the blow-up alternative is either the maximal existence time $T = \infty$ or $T < \infty$, and $\lim_{t \nearrow T} ||u(t)||_{\dot{H}^{1/2}_x(\mathbb{R}^3)} = \infty$. Moreover, by considering the minimizer for the functional

$$
G[u] = \frac{\|(-\Delta)^{1/4}u\|_{L_x^2}^2 \|u\|_{L_x^2}^2}{\int_{\mathbb{R}^3} (|\cdot|^{-1} * |u|^2) |u(x)|^2 dx},
$$

one infers that if the initial datum u_0 satisfies $||u_0||_{L^2_x} < ||Q||_{L^2_x}$, then the corresponding solution *u* is global in $H_x^{1/2}(\mathbb{R}^3)$. Here *Q* is the minimizer for *G*[*u*], and is the unique positive, radial, and non-increasing smooth solution (ground state) to the elliptic equation

$$
(-\Delta)^{1/2}Q + Q = (|\cdot|^{-1} * |Q|^2)Q. \tag{4}
$$

The author proved in [\[4\]](#page--1-2) that the condition $||u_0||_{L_x^2} < ||Q||_{L_x^2}$ is irrelevant with parameter *m*. On the other hand, $||u_0||_{L_x^2} < ||Q||_{L_x^2}$ is optimal in the sense that there exist finite time blow-up solutions with $||u_0||_{L_x^2} > ||Q||_{L_x^2}$. Indeed, from [\[5\]](#page--1-3), for all $N > ||Q||_{L_x^2}$ there exists u_0 with $||u_0||_{L_x^2} = N$ and such that $E_m(u_0) < 0$. By [\[6\]](#page--1-4), Fröhlich and Lenzmann showed by a variance estimate that finite time blow-up solution exists provided that the initial datum satisfies $E_m(u_0) < 0$. These lead to a problem whether concentration occurs at blow-up time if a solution blows up. The concentration phenomena for nonlinear Schrödinger equations have been well studied, see e.g., [\[7–](#page--1-5)[9\]](#page--1-6).

The purpose of this work is to investigate concentration phenomena for finite time blow-up solutions of [\(1\).](#page-0-1) The first main result is the following.

 $\sqrt{\lambda(t)} ||u(t)||_{\dot{H}^{1/2}_x(\mathbb{R}^3)} \to \infty$ *as* $t \nearrow T$ *. Then, there exists* $x(t) \in \mathbb{R}^3$ *such that* **Theorem 1.** Let *u* be the solution of [\(1\)](#page-0-1) and *u* blows up at finite time $T > 0$. Assume $\lambda(t) > 0$ obeying

$$
\liminf_{t \nearrow T} \int_{|x - x(t)| \le \lambda(t)} |u(t, x)|^2 dx \ge ||Q||_{L_x^2(\mathbb{R}^3)}^2.
$$
\n(5)

.

We refer to $\lambda(t)$ as blow-up order. We remark that if $m = 0$, then by setting $u_{\rho}(\tau, x) = \rho(t)^{3/2}u(t +$ $\rho(t)\tau, \rho x$) with $\rho(t)\|u(t)\|_{L}^{2}$ $H_x^{1/2}(\mathbb{R}^3) = 1$, we see $||u_\rho(0)||_{\dot{H}_x^{1/2}(\mathbb{R}^3)} = 1$. From local theory in $H_x^{1/2}(\mathbb{R}^3)$, there exists $\tau_0 > 0$ such that u_ρ is defined on $[0, \tau_0]$. Since *u* is defined in $[0, T)$, we have $t + \rho(t)\tau_0 \leq T$, which implies that

$$
||u(t)||_{\dot{H}^{1/2}_x(\mathbb{R}^3)} \ge C(T-t)^{-1/2}
$$

A concentration result which does not concern the concentration rate has been proven in [\[10\]](#page--1-7). It reads: There exists $y(t) \in \mathbb{R}^3$ such that

$$
\liminf_{t \nearrow T} \int_{|x-y(t)| \le R} |u(t,x)|^2 \, \mathrm{d}x \ge ||Q||_{L_x^2(\mathbb{R}^3)}^2, \quad \forall R > 0.
$$

Download English Version:

<https://daneshyari.com/en/article/8053562>

Download Persian Version:

<https://daneshyari.com/article/8053562>

[Daneshyari.com](https://daneshyari.com)