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Abstract8

In this note, we prove or re-prove several important results regarding one dimen-9

sional time fractional ODEs following our previous work [4]. Here we use the definition10

of Caputo derivative proposed in [8, 10] based on a convolution group. In particular,11

we establish generalized comparison principles consistent with the new definition of12

Caputo derivatives. In addition, we establish the full asymptotic behaviors of the solu-13

tions for Dγ
c u = Aup. Lastly, we provide a simplified proof for the strict monotonicity14

and stability in initial values for the time fractional differential equations with weak15

assumptions.16

1 Introduction17

The fractional calculus in time has been used widely in physics and engineering for memory18

effect, viscoelasticity, porous media etc [5, 7, 2, 1, 9]. There is a huge amount of literature19

discussing time fractional differential equations. For instance, one can find some results20

in [3, 2] using the classic Caputo derivatives. In this paper, we study the following time21

fractional ODE:22

Dγ
c u = f(t, u), u(0) = u0, (1.1)

for γ ∈ (0, 1) and f measurable. Here Dγ
c u is the generalized Caputo derivative introduced23

in [8, 10]. As we will see later, this generalized definition is theoretically more convenient,24

since it allows us to take advantage of the underlying group structure.25

As in [8], we use the following distributions {gβ} as convolution kernels for β ∈ (−1, 0):

gβ(t) =
1

Γ(1 + β)
D
(
θ(t)tβ

)
.

Here θ(t) is the standard Heaviside step function, Γ(·) is the gamma function, and D means
the distributional derivative on R. Indeed, gβ can be defined for β ∈ R (see [8]) so that
{gβ : β ∈ R} forms a convolution group. In particular, we have

gβ1
∗ gβ2

= gβ1+β2
. (1.2)

Here since the support of gβi (i = 1, 2) is bounded from left, the convolution is well-defined.26

Now we are able to give the generalized definition of fractional derivatives:27
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