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a b s t r a c t

In the context of domino effects, vulnerability analysis of chemical and process plants aims to identify
and protect installations which are relatively more susceptible to damage and thus contribute more to
the initiation or propagation of domino effects. In the present study, we have developed a methodology
based on graph theory for domino vulnerability analysis of hazardous installations within process plants,
where owning to the large number of installations or complex interdependencies, the application of
sophisticated reasoning approaches such as Bayesian network is limited. We have taken advantage of a
hypothetical chemical storage plant to develop the methodology and validated the results using a dy-
namic Bayesian network approach. The efficacy and out-performance of the developed methodology
have been demonstrated via a real-life complex case study.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Severity of consequences of potential hazards in a system is a
function of both the magnitude of hazards and the vulnerability of
the system. In other words, exposed to the same level of hazard a
system with higher vulnerability is susceptible to larger damages
and thus suffering higher levels of risk. Johansson et al. [1] use the
term vulnerability to address the inability of a system to withstand
the failures. In the context of domino effect modeling, Khakzad
and Reniers [2] defined the domino effect vulnerability as the
capability of a plant to escalate a primary accident (fire or explo-
sion) to higher order accidents (e.g., secondary fires and explo-
sions). For the purpose of the present study, we adopt the defi-
nition by Khakzad and Reniers [2] and define domino vulnerability
as the susceptability of a plant which allows a primary accident to
spread throughout the plant via cascading effects, triggering sec-
ondary accidents, and so on. Compared to traditional risk analysis
which is aimed at identification of hazards and estimation of the
system failure probabilities, vulnerability analysis is usually per-
formed to pinpoint the system components the failures of which
contribute most to the cascading of failures not only within the
system of interest but also across other interdependent systems.
As such, the emphasis of vulnerability analysis is more on the
extent of failures rather than the probabilities thereof although the
incorporation of the vulnerability analysis in the probabilistic risk
analysis can address both.

Over the past two decades, the issue of cascading effects in
complex and interdependent systems such as water distribution
networks [3], power grids [4,5], and process plants [6–15] has
drawn much attention. The increasing trend in modeling and risk
analysis of cascading effects – better known as domino effects in
hazardous industries such as process plants – mainly lies in the
fact that such cascading failures, although rare, can result in cat-
astrophic consequences. Compared to other infrastructures, how-
ever, the potential consequences of domino effects in process
plants1 can be much more severe owing to the presence of ha-
zardous materials such as flammable, explosive, and toxic sub-
stances. For example, a series of explosions in a LPG2 storage plant
in Mexico in November 1984 left around 600 deaths and 7000
severe injuries; similarly, a series of fires and explosions in Bun-
cefield oil storage depot in the U.K in December 2005 led to the
largest fire in peace time Europe, leaving 43 injuries and incredible
property damages.

Compared to long-established methods for accident modeling
and risk analysis of domino effects in process plants, relevant work
in the field of vulnerability analysis has been relatively few
[13,15,16]. In most previous work, however, either a full simulation
of potential domino effects has been performed to identify the
units contributing the most to the vulnerability of the plant or an
iterative deterministic analysis has been carried out with one
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failure at a time to evaluate the extent of the failure cascade. Re-
gardless of which aforementioned approaches is used, simulations
can turn out too time-consuming and even intractable in case of
large process plants containing many process installations and
equipment.

Many infrastructures such as water distribution networks,
power grids, process plants, and communication networks can be
displayed as graphs in an abstract form, where the components of
the infrastructure are represented as nodes, and the flows of ma-
terials, energy, or information among the nodes are denoted as
edges. Accordingly, some graph metrics have been suggested to
infer about the attributes of the graph (infrastructure) under
consideration. In this regard, graph metrics have been used to
investigate the robustness of (single) communication networks
with regard to technological errors or man-made attacks [17],
vulnerability of (joint) interdependent networks (power network
and Internet communication network) to the cascading effect of
random node failures [18], vulnerability analysis of water dis-
tribution networks [19], and vulnerability analysis of process
plants in the context of domino effects triggered by terrorist at-
tacks [20] or random failures [2].

Following the work of Khakzad and Reniers [2], in the present
study we examine the reliability and efficacy of graph theory
(graph metrics) in domino vulnerability analysis of process plants
under multiple accident scenarios and varying environmental
conditions. We validate the results obtained from graph theory
using a dynamic Bayesian network (DBN) methodology developed
by Khakzad [15]. The efficacy of the developed methodology is
demonstrated via a real case study. To this end, a short review of
Bayesian networks is given in Section 2. The graph theory and
graph metrics are presented in Section 3, while the development,
validation, and application of the methodology are demonstrated
in Section 4. The main conclusions drawn from this work are
presented in Section 5.

2. Bayesian networks

2.1. Ordinary Bayesian networks

Bayesian network (BN) is a probabilistic tool for reasoning
under uncertainty, where the nodes represent random variables
and directed arcs imply local conditional dependencies between
parent and child nodes [21,22]. The type and strength of such
conditional dependencies are defined by means of conditional
probabilities assigned to the nodes. Those parent nodes which are
not children of other parent nodes – so-called root nodes – are
assigned marginal probabilities. satisfying the Markov condition,3

BN factorizes the joint probability distribution of a set of random
variables = { … }U X X X, , , n1 2 as the product of marginal and condi-
tional probabilities of nodes:
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where P(U) is the joint probability distribution of variables and pa(Xi)
is the parent set of variable Xi. For example, considering the BN of
Fig. 1, the joint probability distribution of the variables can be defined
as ( ) = ( )⋅ ( | )⋅ ( | )⋅ ( | )P X1,X2,X3,X4 P X1 P X2 X1 P X3 X1,X2 P X4 X2 .

BN takes advantage of Bayes' theorem to update the probability
of variables given new information E – also known as evidence – to
yield the updated probability:
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where ( )│P U E is the updated joint probability; ∑ ( ).U/E is the
summation over all values of U except E.

2.2. Dynamic Bayesian network

Dynamic Bayesian network (DBN) is an extension of ordinary
BN [22,23] that, compared to its ordinary ancestor, facilitates ex-
plicit modeling of temporal evolution of random variables over a
discretized time line. Dividing the time line to a number of time
slices, DBN allows a node at i-th time slice to be conditionally
dependent not only on its parents at the same time slice but also
on its parents and itself at previous time slices. However, usually
only two time slices are considered in the modeling, so that the
joint probability distribution of a set of random variables at time
tþΔt, that is ( )+∆P U tt , can be expanded as:
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where +∆Xi
t t and Xi

t are the copies of Xi in two consecutive time

slices with a time interval of Δt, and )( +∆Xpa i
t t and ( )Xpa i

t are the
parent sets of Xi at the time slices tþΔt and t, respectively.

Fig. 2 depicts a DBN as a replication of the BN of Fig. 1 over
three consecutive time slices. The directed arcs connecting the
nodes in the same time slices are called intra-slice arcs (black
arcs in Fig. 2) while the arcs linking the nodes in consecutive
time slices are called temporal or inter-slice arcs (red arcs in
Fig. 2). According to the DBN in Fig. 2, the conditional probability
of X3, for example, at the time slice of tþΔt would be

( | )+∆ +∆ +∆X XP X X , ,3
t t

3
t

1
t t

2
t t .

Conventionally, the DBN can be represented as Fig. 3, in which
an arc from a node to itself (represented by red arcs in Fig. 3)
denotes the temporal evolution of the node, taking place from a
time slice to the next (i.e., within Δt). The higher order temporal
evolutions can be denoted as numbers attached to the temporal
arcs.

3. Graph theory

A mathematical graph is an ordered pair = ( )G V E, where
= { … }V v v v, , , n1 2 and = { … }E e e e, , , m1 2 denote sets of n vertices

(nodes) and m edges (directed or undirected), respectively.
In a weighted graph, a set of numerical values can also be assigned
to either the nodes or edges of the graph. In this case, the
weighted graph can be presented as = ( )G V E W W, , ,V E where WV

and WE are weight vectors allocated to the vertices and edges,
respectively.

X1

X2 X3

X4

Fig. 1. A typical ordinary Bayesian network.

3 According to Markov condition, in a Bayesian network a node is conditionally
independent of its non-descendants given its parents. For example, in Fig. 1, X3 is
independent of X4 given X1 and X2, i.e., P(X3 | X1, X2, X4) ¼ P(X3 | X1, X2).
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