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We illustrate how to assess the Value of Information (Vol) in sequential decision making problems
modeled by Partially Observable Markov Decision Processes (POMDPs). POMDPs provide a general fra-
mework for modeling the management of infrastructure components, including operation and main-
tenance, when only partial or noisy observations are available; Vol is a key concept for selecting ex-
plorative actions, with application to component inspection and monitoring. Furthermore, component-
level Vol can serve as an effective heuristic for assigning priorities to system-level inspection scheduling.
We introduce two alternative models for the availability of information, and derive the Vol in each of
those settings: the Stochastic Allocation (SA) model assumes that observations are collected with a given
probability, while the Fee-based Allocation model (FA) assumes that they are available at a given cost.
After presenting these models at component-level, we investigate how they perform for system-level

inspection scheduling.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we investigate how to assess the Value of In-
formation (Vol) in infrastructure management (IM), to integrate
optimal control with strategies for information gathering, includ-
ing component-level inspection and permanent monitoring, and
system-level inspection scheduling.

We can model the IM process, including designing, maintain-
ing, repairing and operating an infrastructure system, as a se-
quential decision making problem, where the manager infers and
predicts the system's condition that evolves due to aging and
deterioration, and takes periodic actions with the overall goal of
minimizing a long-term cost function. Among the actions available
to the manager, some are (at least partially) exploratory actions,
which provide relevant information on the system state. By re-
ducing uncertainty, information systematically improves the
management process; however, as exploring is generally ex-
pensive, the manager has to find an appropriate trade-off between
collecting information and improving the system state through
actions. This is the so-called “exploration vs exploitation” problem,
and its solution poses high computational challenges [1].

Vol is a utility-based metric related to decision making under
uncertainty, and it measures the expected benefit due to the
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availability of a piece of information. In principle, all actions (both
exploitative and explorative) can be treated consistently in a uni-
fied framework, without the need of directly assessing any Vol.
However, it may be convenient to explicitly compute the Vol when
the acquisition of a costly observation or set of observations is
considered at current time. The Vol for one observation depends
on all other available information since, depending on the setting,
the same data can be relevant or redundant. This creates specific
computational challenges in sequential decision making, when the
availability of future observations usually depends on decisions
that have not been taken yet. Generally, in sequential decision
making the agent cannot decouple the selection of current actions
to that of future ones, since the long-term cost depends on the
whole policy implemented during the entire process. The output
of the decision analysis, therefore, should be an optimal long-term
policy, not just an optimal current action. Specifically, the optimal
policy is deeply related to the available information, not only be-
cause the agent can process any collected observation and update
her current belief, but also because the overall effect of a current
action cannot be separated by future collection of observations
and its consequences.

In this paper, we adopt the Partially Observable Markov Deci-
sion Process (POMDP) framework to model sequential decision
making, because of its flexibility and generality. POMDPs include
probabilistic models of degradation, cost and observation de-
pending on the management decisions, and are rooted in Bayesian
analysis. Both Markov Decision Processes (MDPs) and POMDPs
have been extensively investigated for IM applications [2-13], due
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to the computational efficiency of dynamic programming. A
seminal introduction on Vol analysis is provided by the book of
Raiffa and Schlaifer [14], while applications to management of
structural and infrastructure systems is provided by Pozzi and Der
Kiureghian [15], Straub [16], Zonta et al. [17], and Malings and
Pozzi [18]; most applications refer to a single-decision making
problem, however assessment of the Vol in sequential decision
making is also presented in [16,19,20]. While metrics for inspec-
tion scheduling applied to IM have been developed for general
applications [19,21], we recently proposed a Vol-based approx-
imate heuristic for system-level inspection scheduling for POMDPs
[22]. Also recently, Srinivasan and Parlikad [23] investigated how
to evaluate Vol in POMDPs.

In this paper, we generalize our previous work, and illustrate
how to integrate the Vol assessment in the POMDP framework
under two specific assumptions, which we call Stochastic-based
Availability (SA) and Fee-based Availability (FA), discussing in de-
tails the applicability and performance of the corresponding
models. After an introduction to POMDP (Section 2) we propose a
general approach to evaluate the impact of inspecting a compo-
nent or permanently monitoring its condition (Section 3), and to
optimize the system-level inspection scheduling under limited
resources, evaluating the overall impact of inspectors (Section 4),
before drawing conclusions (Section 5).

2. Sequential decision making
2.1. General setting and the MDP framework

In sequential decision-making, an agent (e.g. the infrastructure
manager) selects a sequence of actions, receiving periodic rewards
and possibly observations from the system she is interacting with.
The scope of the process is to minimize the long-term expected
cost, which is usually discounted to its present value. A classical
framework for sequential decision-making is Markov Decision
Process (MPD) [24], which can be efficiently solved by dynamic
programming. However, an MDP assumes perfect information on
the system state at any step of the decision process and, because of
this, is not suitable for investigating the impact of information
gathering.

2.2. The POMDP framework

The POMDP framework shares many assumptions of MDP. At
any time, the system'’s state s assumes one value in finite discrete
set S = { 1,2, ...,|S|}, while the agent can select one action a among
set A = { 1,2, ...,|A|}. Based on the current state and action, she pays
cost r (traditionally, letter r indicates a “reward”, but we use it to
refer to a cost). Time is discretized in steps, and variables s;, a;, 1;
indicate state, action and cost at time t respectively. Expected cost
is assigned by function R(i, k)=E[ r;ls;=i,a;=k], where E indicates
the statistical expectation. After an action is taken, the state
evolves stochastically following a Markov process governed by
transition probability function  T(s, a,9)=P[ s.1=sls=s.a:=a],
where P[ X] indicates the probability of event X.

In MDPs, action a; follows the direct observation of the state s;
that, given the Markovian assumption, is a sufficient statistic for
the process. On the contrary, POMDPs assume that at time t the
agent has access only to a noisy and incomplete measure of the
current state, summarized by observation z, which can assume
one value in set Z= {12, .../Z|}. The relation between state and
observation is captured by the conditional observation probability
(ie. emission) function O(s, a, z)=P[ z:=zs;=s,a;-1=a]. The entire
cost, transition and emission functions are listed in corresponding

matrices T, O, R, of size |S|x|S|x|A], |S|x|Z|x|A| and |S|x|A| respectively.
In IM processes, the transition matrix T defines the degradation
model and the effectiveness of maintenance actions, emission
matrix O defines the accuracy of observations collected by in-
strumented and visual inspections, while cost matrix R defines the
economic model.

Fig. 1 shows a graphical model of a POMDP, using the classical
notation of dynamic Bayesian networks and influence diagrams
(adopted, for example, by the textbook of Barber [25]): circles
define random variables, squares decision variables, diamonds
utility variables, and arrows dependence among variables. Only
shaded variables are observed. Fig. 1 allows us to follow in detail
the temporal process. At time t;, hidden state is sq, the agent takes
action agy and pays cost 1p; then a time step passes, state evolves to
s; that the agent observes imperfectly through z. Action g is se-
lected after having analysed z. Cost, next step state and observa-
tion depend on the action taken; and the process is iterated
indefinitely.

The agent’s goal is to minimize value V, defined as the expected
sum of the discounted costs over an infinite time horizon:
V=E[ ¥, '], using discount factor y (it is to be noted that, in
other traditional contexts, the value indicates an expected reward
that has to be maximized). At time t, the agent’s knowledge about
the current state is represented by a probability distribution, or
belief vector by, so that its i" entry is b (1)=P| s;=ilz;, @; ], with sets
a;={ao,...,a;_1} and Z;={z,...,z;} being the history of observations
and actions up to time t, respectively. Since the belief is a sufficient
statistic for the process, the agent can base her decisions on that.
Formally, a POMDP is defined by the 8-tuple (S, Z,AT, O, R, bo,y).
where by is the initial belief. In the following, we summarize its
parameters in set @:{ T, O, R,y}, since the dimensions of matrices
carry information on the sets S, Z and A. During the process, the
agent updates her belief by iteratively processing any available
observation. Transition and emission probabilities can be com-
bined in operators that allow for predicting the state evolution and
processing observations, making use of Bayes' rule. The move-
forward (f), emission (e), and updating (u) operators, of dimen-
sion |S|, |Z| and |S| respectively, are defined entry-by-entry as fol-
lows:

fi(b, k, ©)=P[ scs1=ila=k, b=b,0] = 37 T(Lki)b(1)
¢j(b, k, ©)=P[ z,1=jla=k, b=b,0] = 3 o(i k j)fi(b. k ©)
. ) . o(i, k, j)f; (b, k, ©)
uj(b, k, j, ®)=P| s¢,q=ila;=k, b;=b,0®, z¢,1=j| = ——FF——=
1( ) [ t+1 t t t+1 ] ej(b. k @) (1)

In summary, if the agent has belief b at time t, takes action k
and observes j at the next step, then the updated belief is
u(b, k, j, ©).

The agent’s behaviour is defined by a policy, i.e. a map between
belief and action. When policy z is adopted, action at time t is set
as ai=r(b;). The value depends on policy = via the recursive linear
equation:

Ve(b, ®)=r(bz(b), ®)+7 X" e.(b, x(b), @)V<[u(b, z(b),z,©)0] (2

where we re-use letter r for indicating expected immediate cost as
a function of belief b and action a, as r(b,a,0)= 2‘55':1 b(s)R(s, a).
The optimal value is defined by the Bellman Equation [26]:
V#(b, @) = min{ r(b,a,0)+y 211 e,(b, a, @)V*[u(b. a, z, @),@] }

aeA

3)

and it is associated with optimal policy #*(b, ®) that can be
identified using “argmin” instead of “min” in Eq. (3).

All formulas presented in the following Sections rely on the
possibility of computing value V*, when belief b and parameter set
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