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ANALYTICITY OF THE INHOMOGENEOUS INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

HANTAEK BAE

Abstract. In this paper, we obtain analyticity of the inhomogeneous Navier-Stokes equa-
tions. The main idea is to use the exponential operator eφ(t)|D|, where φ(t) = δ−θ(t), δ > 0 is
the analyticity radius of (ρ0−1, u0), and |D| is the differential operator whose symbol is given
by ‖ξ‖l1 . We will show that for sufficiently small initial data, solutions are analytic globally
in time in critical Besov spaces.

1. Introduction

In this paper, we study the inhomogeneous incompressible Navier-Stokes equations governing
the time evolution of the density ρ, the velocity u and the pressure π in R3:

ρt + u · ∇ρ = 0, (1.1a)

ρ (ut + u · ∇u) +∇π −∆u = 0, divu = 0. (1.1b)

For the mathematical background of this model, see [9]. When ρ0 is away from zero, we take
the density ρ which is a small perturbation of the constant density, say 1. In this case, we take
η = 1− 1

ρ and rewrite (1.1) in terms of (u, η, π) as

ηt + u · ∇η = 0, (1.2a)

ut −∆u+∇π = −u · ∇u− η∇π + η∆u, divu = 0. (1.2b)

We note that (1.2) satisfies the scaling invariant property: if (u, η, π) solves (1.2), so does

uλ(t, x) = λu
(
λ2t, λx

)
, ηλ(t, x) = η

(
λ2t, λx

)
, πλ(t, x) = λ2π

(
λ2t, λx

)
.

In this paper, we choose the following scaling invariant Besov spaces for initial data

u0 ∈ Ḃ
3
p
−1

p,1 , η0 ∈ Ḃ
3
p

p,1. (1.3)

We require that η stay in a Banach algebra Ḃ
3
p

p,1 to deal with the product of η with u and p.
Let

I0 = ‖u0‖
Ḃ

3
p−1

p,1

+ ‖η0‖
Ḃ

3
p
p,1

,

‖(u, η, π)‖ET = ‖u‖
L̃∞T Ḃ

3
p−1

p,1

+ ‖u‖
L1
T Ḃ

3
p+1

p,1

+ ‖η‖
L∞T Ḃ

3
p
p,1

+ ‖π‖
L1
T Ḃ

3
p
p,1

,
(1.4)

where the regularity of π is determined by the following elliptic PDE:

−∆π = div (u · ∇u+ η∇π + η∆u) . (1.5)

We here restrict take p < 3 for the well-posedness of (1.2): when p ≥ 3, 3
p − 1 is nonpositive

and so it is impossible to bound η∇π and η∆u in the right-hand side of (1.2b) in ET .
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