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Abstract In this paper we investigate a system of impulsive integral boundary value problems with sign-changing

nonlinearities. Using the fixed point theorem in double cones, we prove the existence of multiple positive solutions.
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1. Introduction

In this paper we consider the system of impulsive integral boundary value problems (BVPs)





u′′i (t) + ai(t)u
′
i(t) + bi(t)ui(t) + ci(t)fi(t, u1(t), u2(t)) = 0, t ∈ J ′,

−∆u′i|t=tk = Iki (u1(tk), u2(tk)), k = 1, 2, . . . ,m,

ui(0) =

∫ 1

0

gi(s)ui(s)ds, ui(1) =

∫ 1

0

hi(s)ui(s)ds, i = 1, 2,

(1.1)

where J ′ = J\{t1, t2, . . . , tm}, J = [0, 1], 0 = t0 < t1 < . . . < tm < tm+1 = 1. For i = 1, 2, ai ∈
C(J) such that

∫ 1

0 ai(t)dt > 0, bi ∈ C(J, (−∞, 0)), ci ∈ C(J,R+), ci(t) 6≡ 0, gi, hi ∈ L1(J,R+),

fi ∈ C(J × R+ × R+,R) and f1(t, 0, u2) ≥ 0, f2(t, u1, 0) ≥ 0 for all t ∈ J ′, Iki ∈ C(R+ × R+,R),
where R is the set of real numbers, R+ = [0,+∞). ∆u′i(tk) = u′i(t

+
k )− u′i(t

−
k ), where u

′
i(t

+
k ) and

u′i(t
−
k ) are the right and left limits of u′i(t) at tk.
The model of impulsive differential equation describes evolution processes in which their states

change abruptly at certain moments in time. For an introduction to the basic theory of impul-
sive differential equations, we refer to [1-3] and the references therein. Considerable effort has
been devoted to impulsive differential equations due to their theoretical challenge and potential
applications, for example [4-11].

Hao, Liu and Wu [4] considered the following second order impulsive integral BVP:




u′′(t) + a(t)u′(t) + b(t)u(t) + λc(t)f(t, u(t)) = 0, t ∈ (0, 1) \ {t1, t2, · · · , tm},
−∆u′|t=tk = λIk(u(tk)), k = 1, 2, . . . ,m,

u(0) =

∫ 1

0

g(s)u(s)ds, u(1) =

∫ 1

0

h(s)u(s)ds,

where f ∈ C(J × R+,R+), Ik ∈ C(R+,R+). Under different combinations of superlinearity
and sublinearity of the nonlinear term and the impulses, various existence, multiplicity, and
nonexistence results for positive solutions are derived in terms of the parameter λ lying in some
interval. The argument is based on Krasnoselskii’s fixed point theorem. In [10], the authors
studied the following impulsive BVP:





u′′(t)− p(t)u′(t)− u(t) + λf(t, u) + µg(t, u) = 0, t ∈ [0, T ] \ {t1, t2, · · · , tm},
∆u′|t=tk = Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = u(T ) = 0.

Existence results for multiple solutions are obtained by using variational methods combined with
a three critical points theorem. Using the Leggett-Williams fixed point theorem, Henderson and
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