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a b s t r a c t

This paper investigates how the value of information (VoI) metric can guide information collection and
optimal sensor placement in spatially distributed systems. VoI incorporates relevant features to decision-
making, such as uncertainty about the state of the system, precision of measurements, the availability of
intervention actions, and the overall cost of managing the system. Spatially distributed systems also
allow for information propagation, i.e. measurements collected at one location can be used to update
knowledge at other related locations. In this paper, while restricting our attention to Gaussian random
field and binary state models, we illustrate first how sensor placements depend on the decision-making
problem to be addressed, as encoded in a problem-specific loss function, and second how the complexity
of VoI computations is impacted by this loss function's characteristics. In doing so, we consider several
loss functions and present computational techniques for evaluating VoI under them. Finally, we apply
these techniques to efficiently optimize sensor placements by the VoI metric in two example applica-
tions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Civil infrastructures consist of multiple components distributed
over a spatial domain, which act together to fulfill the function of
the system. The behaviors of these components are affected by
spatially varying quantities, which can be probabilistically de-
scribed using random fields. Fig. 1 gives examples of random fields
and spatially distributed systems. Managers of these systems make
decisions under uncertainty in these fields, trading off the cost of
maintenance activities against the risk and consequences of
component and system malfunctioning. Observations collected by
measuring these fields reduce uncertainty and improve decision
outcomes, but are expensive to acquire. Dependencies between
field variables in a distributed system present opportunities for
efficient information gathering, allowing observations on one part
of the system to reduce uncertainties on related components.
Optimal selection of these measurements, taking information
propagation into account, is therefore important for efficient
monitoring and management of distributed infrastructure
systems.

Many factors impact the selection of these measurements;
prior uncertainty in random fields, dependencies between

variables in these fields, prior risks and consequences of compo-
nent and system failures, the cost of possible actions to avoid these
failures, and the relative costs of sensing activities all have an
impact. In general, to address the problem of optimal sensor pla-
cement (where the term “sensor placement” refers broadly to the
selection of a set of measurements), a metric is needed which
quantifies the utility of information gathering, allowing these to be
compared and optimized.

Several such metrics have been proposed. Metrics based on
modal identification have been investigated by e.g. [1,2] for ap-
plication to sensor placement for the monitoring of dynamic
structures. The seminal work of Krause applies information-the-
oretic concepts like conditional entropy to more general sensor
placement problems, where the sub-modular properties of this
metric allow for provable near-optimal sensor placements by
simple greedy optimization approaches [3]. In particular, these
methods are efficiently applied in systems where variables and
measurements can be jointly described by Gaussian process
models [4—6]. Recently, similar techniques have been applied to
efficient level set estimation and exploration/exploitation tradeoffs
in online sensing [7,8].

Another general metric for sensor placement is the decision-
theoretic value of information (VoI). VoI quantifies the benefit of
obtaining information to a decision-maker, in terms of guiding the
choice of actions to minimize expected losses specified by a pre-
defined loss function [9]. VoI provides a rational metric for
optimizing sensor placements for supporting decision-making by
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directly assessing the benefits of sensing in terms of expected cost
reduction. Efficient evaluation and optimization of this metric in
chain graphical models of discrete random variables is in-
vestigated by [10]. Previous work has quantified the long-term
benefits of structural health monitoring through VoI [11,12]. The
state of the art in applications of VoI to infrastructures is illu-
strated in e.g. [13—17].

A major limitation of VoI as a sensor placement optimization
metric is its computational complexity. Evaluation of VoI requires
pre-posterior analysis, involving prediction of sensing outcomes,
inference to update probabilistic models, optimization of decision-
making, and integration across potential measures. Each aspect of
this problem can be computationally challenging in itself, and thus
VoI evaluation and optimization can be intractable in general.
Previous work involving VoI assessment in infrastructures has
often restricted the class of problems examined to those with
discrete variables and observations and organized system models
in such a way as to allow for more efficient VoI evaluation, e.g.
[18,19]. Alternatively, VoI has been used as the basis for a heuristic
approach to inspection optimization in distributed systems by
[20]. This paper expands on these previous results by investigating
spatially distributed continuous-valued variables and developing
an approach to VoI-based sensor placement optimization in dis-
tributed systems.

Following [21], in this paper, we investigate VoI and its com-
putational complexity in the context of Gaussian static random
field models of spatially distributed systems, under one-stage
decision making. Here “static” means that variable values do not
change between information collection and decision-making, and
“random” means that these values are uncertain. We investigate a
set of assumptions on the problem structure under which VoI can
be efficiently computed. Where these assumptions do not apply,
we make use of approximate techniques for evaluating VoI. This
paper extends the results of [21] to a more general set of problems,
including those with non-decomposable loss functions and in-
vestigates the computational complexity of VoI evaluation for
these loss functions. The paper begins with a general statement of
the problem of sensor placement in distributed systems, including
an overview of spatial random field models, the VoI metric, and
the greedy algorithm for optimizing sensor placement in Section 2.
In Section 3, we describe methods for tractably computing VoI
using Gaussian process random field models and specific loss
functions. Section 4 presents numerical investigations of the VoI
metric, as well as demonstrative applications of this metric to
optimal sensor placement. General discussions and conclusions
regarding VoI and sensor placement are given in Section 5.

2. Pre-posterior analysis for sensor placement

2.1. Random field models of spatially distributed phenomena

Define ΩX to be the spatial domain over which the system of
interest is distributed. Vector x identifies a point within this do-
main. For computational purposes, the continuous domain is dis-
cretized at a set of m points ={ … }X x x, , m1 . These coordinates can in
general represent any discretization of the field, e.g. a set of grid
points over a two-dimensional region, or the coordinates of the
components of the infrastructure system.

Variables affecting the system are described by model F of a
spatially distributed random field f , according to prior probabil-
istic distribution pF [22]:

( )~ ( )f px 1F

In general, ( )f x may be multivariate, describing the values of
multiple co-located random fields for different features of interest.
Vector f denotes the random quantities at discrete locations X,
concatenating the variables for co-located random fields into this
single vector for notational simplicity.

2.2. Observation and inference

Sensors measure subsets of random fields F , potentially with
noise. The set of these measurements is denoted as Y , and a
specific observation of the set as y . While in many cases ob-
servations are made at discrete points, generally observations are
of any random variables within F , as well as sets or functions of
these variables. For a proposed set of measurements Y , the prob-
abilistic distribution over potential observations conditional to the
random field values f is:

| ~ ( )|py f 2Y f

The prior distribution over observations can be defined using
the law of total probability:

∫ ( )= ( )|p p p f fd 3Y FfY

Bayesian inference allows observation y to define a posterior
probability distribution over the random fields conditional to this
observation:

| ~ ∝ ( )| |p p pf y 4F Y Fy f

2.3. Actions and losses

Denote by A the set of actions which the manager of an in-
frastructure system can take. Vector a refers to the set of chosen

Fig. 1. Examples of distributed systems subjected to random field stresses: a) roadways crossing a floodplain with varying depth; b) an electrical transmission line affected
by spatially varying wind loads; c) a group of wells subjected to groundwater acidification from leakage of a carbon sequestration reservoir.
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