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a b s t r a c t

We prove well-posedness for a transport-diffusion problem coupled with a wave
equation for the potential. We assume that the initial data are small. A bilinear
form in the spirit of Kato’s proof for the Navier–Stokes equations is used, coupled
with suitable estimates in Chemin–Lerner spaces. In the one dimensional case, we
get well-posedness for arbitrarily large initial data by using Gagliardo–Nirenberg
inequalities.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Transport-diffusion equations have a vast phenomenology and have been widely studied. See, among
others, [1–4] in the case of the semi-conductor theory, and [5] in the case of Fokker–Planck equations. The
goal of this note is to prove existence and uniqueness of the solution for a modified semi-conductor equation.

In order to simplify the presentation, we restrict to the case of a single electrical charge. The novelty of
our equations is that we replace the Poisson equation on the potential by a wave equation. This is a quite
natural change, since the electric charge itself depends on the time. From a mathematical point of view,
switching from a Poisson equation to a wave equation roughly amounts to the loss of one derivative in the
estimates on the potential. Moreover, it seems that one is bound to work in Lp

t spaces with 1 ≤ p ≤ 2 due
to the usual Strichartz estimates.

In this paper, we prove the existence of a mild solution in Chemin–Lerner spaces L̃1(0, T, Ḣn/2−1(Rn)).
We first restrict to the case of small initial data (n ≥ 2), and use a variant of the Picard fixed point theorem
as in the proof of Kato’s and Chemin’s theorems for the Navier–Stokes (and related) equations. See [6–8] and
also [9,10]. In particular, we work in homogeneous Sobolev spaces in order to get T -independent estimates
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for the heat equation. Note also that our bilinear form depends on a nonlocal term, given as the solution of
the wave equation on the potential.

In the case n = 1, well posedness is established for arbitrary large initial data (Section 4). Local well
posedness is obtained as in Section 3. The global existence is proved by combining the usual L1 estimate
with a Gagliardo–Nirenberg inequality, in the spirit of [2].

2. Equations and preliminary results

We begin with some notations. In this section n ≥ 2, T > 0, and s < n/2 are given. The homogeneous
Sobolev spaces Ḣs(Rn) are often denoted by Ḣs. For p ≥ 1, we also use the Chemin–Lerner spaces
L̃p(0, T, Ḣs(Rn)) = L̃p(0, T, Ḃs

2,2(Rn)), or simply L̃p
T (Ḣs). Recall that a distribution f ∈ S ′(]0, T [ × Rn

)
belongs to the space L̃p

T (Ḣs) iff Ṡjf → 0 in S ′ for j → −∞, and ∥f∥L̃
p
T

(Ḣs) := ∥(2js∥∆̇jf∥L
p
T

(L2))j∈Z∥l2(Z) <

∞. Here, Ṡjf and ∆̇jf are respectively the low frequency cut-off and the homogeneous dyadic block defined
by the usual Paley–Littlewood decomposition. See [10] p.98 for details. Last, we write ∇ for the (spatial)
gradient, div for the divergence and ∆ = div∇.

We now give the equations we are dealing with. Set s = n/2 − 1. Consider the Cauchy problem on the
scalar valued functions u and V defined on R+ × Rn

x

∂tu − ∆u = div(u∇V ) (1)
∂ttV − ∆V = u (2)
u(0) = u0 (3)
V (0) = V0, Vt(0) = V1 (4)

For u0 ∈ Ḣs, (∇V0, V1) ∈ Ḣs × Ḣs and u ∈ L̃1
T (Ḣs) given, we denote by S(u, V0, V1) ∈ C0(

0, T, S ′(Rn)
)

the unique solution of the wave equation (2), (4). With these notations, the system (1)–(4) is interpreted as
the following problem (P):

find u ∈ L̃1
T (Ḣs) such that

∂tu − ∆u = div(u∇S(u, V0, V1)) (5)
u(0) = u0 (6)

For future reference, we recall a standard result on the heat equation (see [10] p.157)

Proposition 2.1. Let T > 0, σ ∈ Rn and 1 ≤ p ≤ ∞. Assume that u0 ∈ Ḣσ and f ∈ L̃p
T (Ḣσ−2+ 2

p ). Then
the problem

∂tu − ∆u = f (7)
u(0) = u0 (8)

admits a unique solution u ∈ L̃p
T (Ḣσ+ 2

p ) ∩ L̃∞
T (Ḣσ) and there exists C > 0 independent of T such that, for

any q ∈ [p, ∞]

∥u∥
L̃

q
T

(Ḣ
σ+ 2

q )
≤ C

(
∥f∥

L̃
p
T

(Ḣ
σ−2+ 2

p )
+ ∥u0∥Ḣσ

)
(9)

Moreover, for f = 0, we have u ∈ C0([0, T ], Ḣσ) ↪→ L1([0, T ], Ḣσ).
The same statements hold true in nonhomogeneous Sobolev spaces with a constant C = CT depending

on T .
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