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Abstract

In this paper, we study the global regularity for the tropical climate model with frac-

tional diffusion on barotropic mode with α ≥ 5
2
.
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1 Introduction

In this paper, we consider the following tropical climate model with fractional diffusion on

barotropic mode

ut + (u · ∇)u +∇p+ Λ2αu+ div(v ⊗ v) = 0, (1.1)

vt + (u · ∇)v +∇θ + (v · ∇)u = 0, (1.2)

θt + (u · ∇)θ + divv = 0, (1.3)

div u = 0, (1.4)

(u, v, θ)(x, 0) = (u0, v0, θ0), (1.5)

where x ∈ R3 and t > 0. u = u(x, t), v = v(x, t) and θ = θ(x, t) denote the barotropic mode,

the first baroclinic mode of the velocity and temperature, respectively. A fractional power of

the Laplace transform, (−∆)α is defined through the Fourier transform

̂(−∆)αf(ξ) = |ξ|2αf̂(ξ).

In particular, Λ = (−∆)
1
2 is defined in terms of Fourier transform by Λ̂f(ξ) = |ξ|f̂(ξ).

In [1], Frierson, Majda and Pauluis derived the original version of system (1.1)-(1.5) without

Λ2αu by using a Galerkin truncation to the hydrostatic Boussinesq equations. For the 2D case,

when α = 1 and adding −∆v in (1.2), Li and Titi [2] established the global well-posedness of

strong solutions. They introduced a new pseudo baroclinic velocity

ω = v −∇(−∆)−1θ
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