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a b s t r a c t

The challenge of Risk-Informed Safety Margin Characterization (RISMC) is to develop a methodology for
estimating system safety margins in the presence of stochastic and epistemic uncertainties affecting the
system dynamic behavior. This is useful to support decision-making for licensing purposes. In the present
work, safety margin uncertainties are handled by Order Statistics (OS) (with both Bracketing and Cov-
erage approaches) to jointly estimate percentiles of the distributions of the safety parameter and of the
time required for it to reach these percentiles values during its dynamic evolution.

The novelty of the proposed approach consists in the integration of dynamic aspects (i.e., timing of
events) into the definition of a dynamic safety margin for a probabilistic Quantification of Margin and
Uncertainties (QMU).

The system here considered for demonstration purposes is the Lead–Bismuth Eutectic- eXperimental
Accelerator Driven System (LBE-XADS).

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Risk assessment and safety analysis are traditionally supported
by a Deterministic Safety Analysis (DSA) of a limited set of Design
Basis Accidents (DBAs) under largely conservative assumptions
[27]. For this, IAEA defines four possible options that combine
differently computer codes availability, realism of assumptions and
boundary conditions [17]. Among these options, traditional DSA
using Best Estimate (BE) Thermal-Hydraulic (TH) codes based on
conservative (pessimistic) assumptions on the system dynamics
and physical models (i.e., IAEA option 3) is limited in the con-
sideration of system failure modes and sequences, timing and
order of failure events.

Probabilistic Safety Assessment (PSA) overcomes the limitation
of considering only DBAs by extending the set of accidents through
a systematic analysis of the failure events and sequences (e.g., by
Event Trees (ETs)/Fault Trees (FTs)). Yet, PSA does not give full
account to the timing of failure events and to the magnitude of
component failures, which can be important especially when the
system dynamics significantly influences the system failure
behavior [31].

Dynamic reliability approaches [33,9,20,19,14,10,2] have been
developed, aimed at giving explicit account to the interactions
among the physical parameters of the process (such as tempera-
ture, pressure, speed, etc.), the human operators actions and the
failures of the hardware and software components. This creates
the opportunity of DSA and PSA integration into one framework of
Integrated Deterministic and Probabilistic Safety Analysis (IDPSA)
[2,45] and as a by-product for the quantification of operational
safety margins within a dynamic reliability scheme [44].

Traditionally, a safety margin is defined as the minimum dis-
tance between the system “loading” and its “capacity” [34]. The
challenge is the effective representation of the uncertainties
inherent in the TH code parameters, correlations and
approximations.

Uncertainty is typically distinguished into two types: ran-
domness due to inherent variability in the system behavior and
imprecision due to lack of knowledge and information on the
system [5]. The former type of uncertainty is often referred to as
objective, aleatory, stochastic, whereas the latter is often referred
to as subjective, epistemic, state of knowledge [5,16]. To deal with
these uncertainties, traditional safety margins quantification in
DSA analysis has implied conservatism in both the analysis of the
TH code outputs and the evaluation criteria [28]. Best Estimate
(BE) methodologies have reduced the amount of conservatism for
the evaluation of safety margins, but do not take into account all
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aleatory and epistemic uncertainties in the physical models sto-
chastic behavior and model parameter values [11,34].

In order to more realistically quantify the uncertainty of TH
code outcomes, a probabilistic safety margin definition has been
proposed for PSA, which better deals with epistemic uncertainties
[43]. However, the effect of timing, order and magnitude of the
component failures on the system dynamics is not considered.

In this respect, a Dynamic probabilistic safety margin (DSM)
approach is proposed in this paper, based on time-dependent
phenomenological models of stochastic system evolution includ-
ing possible dependencies between failure events [2]. For this, we
introduce a novel definition of a DSM by the combined quantifi-
cation of a percentile (e.g., 95th) of the safety parameter dis-
tribution (e.g., oil temperature, peak cladding temperature) and a
percentile (e.g., 5th) of the distribution of the earliest time
required to the safety parameter to reach the given percentile
value. The uncertainties affecting the DSM are treated using Order
Statistics (OS) (i.e., Bracketing and Coverage approach) [28]. By

doing so, we are able to compute the confidence that, for a
selected accidental scenario of a Dynamic Event Tree (DET)
obtained by a IDPSA analysis, the estimated 95th percentile of the
safety parameter cannot be reached before the 5th percentile of
the estimated time: if these estimated percentiles meet the safety
criteria with the required confidence, the NPP can be licensed as
“safe” to withstand the selected accidental scenario.

The rationale behind the choice of the selection of the 95th and
the 5th percentiles for the safety parameter and the estimated
time, respectively, lies in the attempt of assuring that there is no
significant evidence of exceedance of the safety parameter
threshold which could lead to a higher than accepted probability
of failure within an extremely unavoidable (fast) time (i.e., the
unlikely condition that the safety parameter reaches the threshold
within the 5th percentile value of the time distribution). With
these assumptions, the proposed definition of DSM provides the
analyst with the additional resilience information on the available
time for counteracting the occurrence of an accidental scenario,

Notation And List Of Acronyms

BDBA Beyond Design Basis Accident
BE Best Estimate
DBA Design Basis Accident
DET Dynamic Event Tree
DSA Deterministic Safety Analysis
DSM Dynamic probabilistic safety margin
ECCS Emergency Core Cooling System
ET Event Tree
FT Fault Tree
IDPSA Integrated Deterministic and Probabilistic Safety

Assessment
LBE-XADS Lead Bismuth Eutectic- eXperimental Accelerator

Driven System
LOCA Loss of Coolant Accident
MC Monte Carlo
NPP Nuclear Power Plant
OS Order Statistics
PCT Peak Cladding Temperature
PID Proportional- Integral-Derivative controller
PSA Probabilistic Safety Assessment
PWR Pressurized Water Reactor
QMU Quantification of Margin and Uncertainties
RISMC Risk Informed Safety Margin Characterization
TH Thermal Hydraulic
U Upper Safety Threshold
L Lower Safety Threshold
To max, Maximum Temperature of Diathermic Oil
P t( ) Thermal power
Q t( ) Proton Beam

LB
C P,τ Temperature of LBE liquid leaving from the top of the

core of the LBE XADS

LB
P C,τ Temperature of LBE liquid re-entering the core from

the bottom of the LBE XADS
TLB

av C, Average in-core temperature of LBE liquid
taΓ ( ) Airflow

To
av S, Average temperature of diathermic oil

To
th u, Upper safety threshold of LBE XADS diathermic oil

temperature
To

th l, Lower safety threshold of LBE XADS diathermic oil
temperature

m1 Flow rate of air when PID controller fails stuck
m2 Airflow mass flow when air coolers fail stuck

m3 Flow rate of air when feedforward controller fails
stuck

Tain Air inlet temperature from air cooler
x̄ Input values vector
xm mth element of the input vector
x i( ) ith element of the representative sample of indepen-

dent input vectors
J Number of safety parameters
j Index of the safety parameter
y Set of values of first output vector (e.g., safety

parameter)
y aj ( ) j-th safety parameter for accidental scenario a
yjref Reference value for y aj ( )
M y a,j( ) Safety margin for the j-th safety parameter during

accidental scenario a
M ,γ β( ) Probabilistic safety margin
M , , ,1 2 1 2γ γ β β( ) Dynamic probabilistic safety margin
y Set of values of first output vector (e.g., safety

parameter)
yt Set of values of second output vector (e.g., time)
y ̅ Safety parameter output vector
y ̅* Ordered set of the safety parameter output vector
yt̅ Time output vector
yt̅

* Ordered set of the time output vector
f y( ) Probability density function of y
f y( )γ Probability density function of the γ-th percentile of y
k Number of outputs
N Number of simulations
β Confidence value

1β Confidence value of the safety parameter (e.g., 95%)

2β Confidence value of the time (e.g., 95%)
γ Coverage value
γ1 Coverage value of the safety parameter (e.g., 95th

percentile)
γ2 Coverage value of the time (e.g., 5th percentile)
m Number of values that lie beyond the γ coverage

extent
yγ Real γth percentile
y 1γ̂ Estimated γth percentile of the safety parameter
yt 2
^

γ Estimated γth percentile of the time
y

1γ Real value of the γth percentile of the safety parameter
yt 2γ Real value of the γth percentile of the time
y95 Real 95th percentile
y95
^ Estimate of the 95th percentile
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