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a b s t r a c t

In this paper a short-term risk evaluation is performed for electric power stations, where each power
generating unit is presented by a multi-state Markov model. Risk is treated as the probability of loss of
load or in other words, as the probability of system entrance in the set of states, where demand cannot be
satisfied. The main obstacle for risk evaluation in such cases is a "curse of dimensionality" – a great
number of states of entire power station that should be analyzed. Usually when the number of system
states is increasing drastically, enormous efforts are required for solving the problem by using classical
Markov methods or simulation techniques. Well known universal generating function technique also
cannot be directly applied because this technique is primarily oriented to steady-state reliability analysis.
By using such extension of UGF techniques as Lz-transform, one can find for the short-term such relia-
bility characteristics as loss of load probability, expected energy not supplied to consumers etc. However
risk function still cannot be obtained by using these techniques. This problem in many practical cases is a
challenge for reliability researchers and engineers. In this paper, a special method based on inverse
Lz-transform (LZ

1− transform) is developed in order to calculate risk function for such multi-state power
systems. In order to illustrate the proposed approach, the short-term risk evaluation for a power station
with different coal-fired generating units is presented.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-state system (MSS) reliability analysis and optimization
is one of most intensively developing areas in modern reliability
theory [1,2,17]. Multi-state models are widely used in the field of
power system reliability assessment [3]. It has been recognized [4]
that using simple two-state models for large generating units in
generating capacity adequacy assessment can yield pessimistic
appraisals. In order to more accurately assess power system
reliability, many electric utilities now utilize multi-state models
instead of two-state representations [4,5]. A technique, called the
apportioning method [4], is usually used to create steady-state
multi-state generating unit models based on real world statistical
data for generating units. Utilizing this technique, steady-state
probabilities of generating units residing at different generating
capacity levels can be defined. When the short-term behavior of a
MSS is studied, the investigation cannot be based on steady-state
(long-term) probabilities. This investigation should use the MSS
model, in which transition intensities between any states of the
model are known. Such general multi-state Markov model was
considered for coal fired generating unit in [6]. This paper

describes the method for transition intensities estimation from
actual generating unit failures (deratings) and repair statistics,
which is presented by the observed realization of generating
capacity stochastic process.

It was shown that such important reliability indices as Loss of
Load Probability (LOLP), Expected Energy Not Supplied (EENS) to
consumers, etc., which were found for a short time, are essentially
different from those found for a long-term evaluation. Especially
important is a fact that these indices strongly depend on power
system initial condition. Usually in each power station there are a
number of generating units. If a power station consists of n gen-
erating units where each unit is represented by m-state Markov
model, then the Markov model for the entire power station will
have mn states. In order to find reliability indices for entire power
station, this complicated model should be built and analyzed. As
can be seen, it will require enormous efforts even for relatively
small m and n. In order to overcome this obstacle, a specific
approach called the Universal Generating Function (UGF) techni-
que has been introduced in [7] and then successfully applied to
MSS reliability analysis [8,9] and to power system reliability ana-
lysis and optimization [21–23]. The main limiting factor of the UGF
technique application to power system reliability analysis is that
UGF is based on a moment generating function that is mathema-
tically defined only for random variable. This fact is a reason for
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considering a performance (capacity) of each system component
as a random variable, in spite of the fact that in reality it is a
discrete-state continuous-time stochastic process [2]. In practice
this important restriction leads one to consider only steady-state
parameters of power system. Monte Carlo simulation technique is
another technique for reliability evaluation of MSS, which is used
for reliability assessment of restructured power systems [19].
However Monte Carlo simulation technique for reliability assess-
ment of large scale MSS is time consuming, which restricts its
practical application. In order to extend UGF technique application
to dynamic reliability models a special mathematical technique
–LZ-transform was suggested in [10]. Recently there are some
successful applications of LZ-transform method to dynamic relia-
bility analysis of general MSS [11,12].

A LZ-transform technique has been demonstrated in [13] for
power system short-term evaluation for such important indices as
availability, expected energy not supplied, expected capacity
deficiency. However for effective power system dispatch it is often
important to obtain power system risk function, which cannot be
found by using LZ-transform.

For example, it may be needed to know how much time a system
has under specified initial conditions up to its entrance in the failure
state, when required power demand will not be satisfied. Therefore it
is important to know probability distribution of time up to the failure,
where failure is treated as the system entrance in the set of states
with unsatisfied demand. In other words, evaluation of power system
risk function tRisk( ) is necessary.

Based on the risk function the system operator can make
appropriate operating decisions such as starting reserve gen-
erators, unit shut down in order to provide maintenance and so
on. For these purposes, this paper suggested an approach that is
based on inverse LZ-transform L transformZ

1( − )− that was intro-
duced and mathematically defined in [14]. Based on this approach
a power system risk function can be found and system operator
can estimate risk corresponding to each operating decision.

Generally the suggested approach can be presented by the
following steps:

1. Solving classical differential equations for Markov model of each
system element in order to obtain state probabilities as func-
tions of time and determine Lz-transform for each individual
element.

2. Obtaining resulting Lz-transform for the entire system output
Markov process by using Ushakov's universal generating
operator and corresponding UGF techniques.

3. Uncovering underlying Markov process for the obtained
resulting Lz-transform by utilizing inverse Lz-transform.

4. Investigating uncovered Markov process for obtaining the risk
function of the entire system.

A numerical example illustrates the application of the approach
to power system risk analysis and corresponding benefits.

2. Inverse LZ-transform: definitions and computational
procedures

2.1. Definitions

Here we present a brief description of LZ-transform and inverse
LZ-transform.

Consider a discrete-state continuous-time (DSCT) Markov process
[15], X t x x, , K1( ) ∈ { … }, t 0≥ , which has K possible states xi, i¼1,…,K.
In MSS reliability theory x1,…, xK usually are interpreted as possible

performance levels. This Markov process is completely defined by set
of K possible states x xx , , K1= { … }, transitions intensities matrix

a t i j KA , , 1, ,ij= ‖ ( )‖ = … and by initial states probability distribu-
tion that can be presented by the corresponding set:

⎡⎣ ⎤⎦p X x p X xp Pr 0 , , Pr 0 .K K0 10 1 0= = { ( ) = } … = { ( ) = }

From now on, we shall use for such Markov process the fol-
lowing notation by using triplet:

X t x A p, , . 10{ }( ) = ( )

Remark. If functions a t aij ij( ) = are constants, then the DSCT
Markov process is said to be time-homogeneous. When a tij ( )are
time dependent, then the resulting Markov process is non-
homogeneous.

Definition 1. [10]. LZ-transform of a discrete-state continuous-
time Markov process X t x A p, , 0( ) = { } is a function u z t p, , 0( )
defined as

L X t u z t p t zp, , .
2

Z
i

K

i
x

0
1

i∑{ ( )} = ( ) = ( )
( )=

where p ti ( ) is the probability that the process is in state i at
time instant t 0≥ for any given initial states probability distribu-
tion p0, and z in general is a complex variable.

It was proven in [10] that for discrete state continuous time Markov
process, X t x A p, , 0( ) = { }, where transition intensities a tij ( ) are con-
tinuous functions of time, exists one and only one (unique) LZ-transform.
In other words, each discrete-state continuous-time Markov process
with continuous transition intensities under certain initial conditions p0
has only one (unique) LZ-transform u z t p, , 0( ) and each LZ-transform
u z t p, , 0( ) will have only one corresponding DSCTMarkov process X t( )
developing from these initial conditions.

Remark. The main reason for Lz-transform introduction in [10]
was the fact that UGF is defined only for random variables, not for
stochastic processes. Therefore states probabilities pi in the UGF
expression are not dependent on time t. However, in practice often
it is not enough to present MSS and its components as random
variables. Generally, when it is needed to investigate transient
modes, aging processes, etc., the system and its components
should be described as stochastic processes. Therefore, by using
UGF it was possible to investigate only steady-state behavior of
MSS. Transient modes, aging processes, etc. where states prob-
abilities pi(t) are time-dependent (functions of time t) were out of
the scope of UGF. As it was proven in [10], based on Lz-transform it
is possible to utilize Ushakov’s universal generating operator in
order to perform MSS reliability analysis in all these modes by
using well established technique of Ushakov’s operator. This
technique is often called as UGF technique. So, Lz-transform is a
new mathematical object that extends application of this techni-
que to MSS, where its components are described by using
stochastic (discrete-state continuous-time Markov) processes.
The unique condition that should be fulfilled is the following:
all Markov stochastic processes under consideration should
have transition intensities a tij ( ) that are continuous functions of
time.

Definition 2. [14]. Inverse LZ- transform ( LZ
1− -transform) of a function

(2) where each p ti ( )is a probability that some unknown discrete-state
continuous-time Markov process X t( ) (which begins under certain
initial conditions p0at instant t 0= ) is in state i at time instant t 0≥ ,
xi is the performance in this state, and z is a complex variable,
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