On the missing eigenvalue problem for Dirac operators

Yu Ping Wang ${ }^{\text {a,* }}$, V.A. Yurko ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
${ }^{\text {b }}$ Department of Mathematics, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russia

A R T I C L E I N F O

Article history:

Received 5 November 2017
Received in revised form 4 January 2018
Accepted 4 January 2018
Available online 11 January 2018

MSC:

34A55
34L05
34L40
45C05
Keywords:
Inverse spectral problem
Dirac operator
Missing eigenvalue problem
Potential

A B S TRACT

The inverse spectral problem for Dirac operators is studied. By using the result on the Weyl m-function, we show that the Hochstadt-Lieberman-type and Borg-type theorem for Dirac operators except for one arbitrary eigenvalue hold.
© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following Dirac operator $L:=L\left(V_{1}, V_{2}, \alpha, \beta\right)$ defined by

$$
\left\{\begin{array}{l}
u_{2}^{\prime}+V_{1}(x) u_{1}=\lambda u_{1}, \tag{1.1}\\
-u_{1}^{\prime}+V_{2}(x) u_{2}=\lambda u_{2},
\end{array} \quad x \in(0, \pi),\right.
$$

with boundary conditions

$$
\begin{align*}
& u_{1}(0, \lambda) \sin \alpha+u_{2}(0, \lambda) \cos \alpha=0, \tag{1.2}\\
& u_{1}(\pi, \lambda) \sin \beta+u_{2}(\pi, \lambda) \cos \beta=0, \tag{1.3}
\end{align*}
$$

where $0 \leq \alpha, \beta<\pi, \lambda$ is the spectral parameter, $V_{k}(x), k=1,2$, are absolutely continuous real-valued functions. In the case where $V_{1}(x)=V(x)+m$ and $V_{2}(x)=V(x)-m, V(x)$ is a potential function and

[^0]$m>0$ is the mass of a particle, (1.1) is called a one-dimensional stationary Dirac system in relativistic quantum theory (see [1,2]). Direct and inverse problems for (1.1)-(1.3) have been studied in [1-5] and other works.

The inverse spectral problem consists in recovering this operator from its spectral characteristics. Inverse problems have many applications in mathematics, natural sciences and engineering (see $[2,6]$ and other works). Inverse problems have been studied fairly completely for Sturm-Liouville operators (see, [1,2,6-12] and the references therein). In particular, using the Weyl- m function techniques, Gesztesy and Simon [8] solved an inverse problem involving fractions of the eigenvalues of the Sturm-Liouville operator on a finite interval and knowledge of the potential over a corresponding fraction of the interval, which is a generalization of the Hochstadt-Lieberman theorem [9]. In 2009, Wei and Xu [12] solved an open problem of missing one eigenvalue presented by Gesztesy and Simon [8] and showed that if the potential is prescribed on the half interval and coefficients of boundary conditions are known a priori, then all eigenvalues of missing one eigenvalue is sufficient to determine the potential on the whole interval. The necessary and sufficient conditions on the missing eigenvalue problem for the Hochstadt-Lieberman theorem for the Sturm-Liouville operator was considered in [10]. The results on missing eigenvalue problems for differential pencils were found in [13]. In this paper we study the missing eigenvalue problems for Dirac operator.

2. Preliminaries

Let $\left(u_{1}(x, \lambda), u_{2}(x, \lambda)\right)^{T}$ be the solution of the system of (1.1) with initial conditions $u_{1}(0, \lambda)=\cos \alpha$ and $u_{2}(0, \lambda)=-\sin \alpha$. By the method of successive approximations [2], we have

$$
\begin{align*}
& u_{1}(x, \lambda)=\cos (\lambda x-\eta(x)-\alpha)+\frac{U_{1}(x, \lambda)}{\lambda}+o\left(\frac{\mathrm{e}^{\tau x}}{\lambda}\right), \tag{2.1}\\
& u_{2}(x, \lambda)=\sin (\lambda x-\eta(x)-\alpha)+\frac{U_{2}(x, \lambda)}{\lambda}+o\left(\frac{\mathrm{e}^{\tau x}}{\lambda}\right) \tag{2.2}
\end{align*}
$$

for $|\lambda| \rightarrow \infty$, uniformly in $x \in[0, \pi]$, where $\tau=|\operatorname{Im} \lambda|, \eta(x)=\frac{1}{2} \int_{0}^{x}\left[V_{1}(t)+V_{2}(t)\right] \mathrm{d} t$ and

$$
\begin{aligned}
U_{1}(x, \lambda)= & \frac{v_{1,2}(0)}{4} \cos (\lambda x-\eta(x)+\alpha)-\frac{v_{1,2}(x)}{4} \cos (\lambda x-\eta(x)-\alpha) \\
& +\frac{1}{8} \int_{0}^{x} v_{1,2}^{2}(t) \mathrm{d} t \cdot \sin (\lambda x-\eta(x)-\alpha), \\
U_{2}(x, \lambda)= & \frac{v_{1,2}(x)}{4} \sin (\lambda x-\eta(x)-\alpha)+\frac{v_{1,2}(0)}{4} \sin (\lambda x-\eta(x)+\alpha) \\
& -\frac{1}{8} \int_{0}^{x} v_{1,2}^{2}(t) \mathrm{d} t \cdot \cos (\lambda x-\eta(x)-\alpha),
\end{aligned}
$$

where $v_{1,2}(x)=V_{1}(x)-V_{2}(x)$. The characteristic function $\Delta(\lambda)$ of (1.1)-(1.3) is defined by the following relation:

$$
\begin{equation*}
\Delta(\lambda):=u_{1}(\pi, \lambda) \sin \beta+u_{2}(\pi, \lambda) \cos \beta \tag{2.3}
\end{equation*}
$$

and all zeros $\lambda_{n}, n \in \mathbb{Z}$ of $\Delta(\lambda)$ coincide with the eigenvalues of L. Denote $\sigma(L):=\left\{\lambda_{n}: n \in \mathbb{Z}\right\}$. Then all eigenvalues λ_{n} are real and simple, and satisfy the asymptotic formula (see [2]):

$$
\begin{equation*}
\lambda_{n}=n+\frac{\omega_{1}}{\pi}+\frac{\omega_{2}}{n}+o\left(\frac{1}{n}\right) \tag{2.4}
\end{equation*}
$$

where

$$
\omega_{1}=\alpha-\beta+\eta(\pi), \quad \omega_{2}=\frac{1}{4 \pi \cos ^{2} \omega_{1}}\left[v_{1,2}(\pi) \sin (2 \beta)-v_{1,2}(0) \sin (2 \alpha)+\frac{1}{2} \int_{0}^{\pi} v_{1,2}^{2}(t) \mathrm{d} t\right] .
$$

https://daneshyari.com/en/article/8053860

Download Persian Version:
https://daneshyari.com/article/8053860

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ypwang@njfu.com.cn (Y.P. Wang), yurkova@info.sgu.ru (V.A. Yurko).

