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a b s t r a c t

The trend-renewal-process (TRP) is defined to be a time-transformed renewal process, where the time
transformation is given by a trend function λ(·) which is similar to the intensity of a nonhomogeneous
Poisson process (NHPP). A nonparametric maximum likelihood estimator of the trend function of a TRP
can be obtained in principle in a similar manner as for the NHPP using kernel smoothing. For a full
nonparametric estimation of a trend-renewal process it is necessary, however, to estimate jointly the
trend function and the renewal distribution. For this purpose we consider a nonparametric approach
using kernel smoothing techniques. We develop an original algorithm to estimate the conditional
intensity function by preserving its structure in terms of the trend function and the underlying renewal
process. The algorithm is applied to both simulated and real data sets.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Repairable systems are systems that are repaired to satisfactory
performance after a failure. Traditionally, the literature on repair-
able systems treats the failure times using point process theory
[2,25]. The most common models for the failure process of a
repairable system are nonhomogeneous Poisson processes (NHPP),
related to what is called minimal repairs, and renewal processes
(RP), related to perfect repairs or replacements. For many appli-
cations it is more reasonable, however, to model the repair action
by something in between the two given extremes, leading to the
need for more general models, often called imperfect repair
models.

The classical imperfect repair model is the one suggested by
Brown and Proschan [7], which assumes that at the time of each
failure a perfect repair occurs with probability p and a minimal
repair occurs with probability p1 − , independently of the previous
failure history. This model has been generalized in several direc-
tions, many of them using the concept of effective age or virtual
age. The most famous of the latter type of models was suggested
by Kijima [19]. The idea is to distinguish between the system's true
age, which is the time elapsed since the system was new, and the
virtual age of the system which describes its present condition
when compared to a new system. The virtual age is redefined at
failures according to the type of repair performed, and runs along

with the calendar time between failures. Doyen and Gaudoin [10]
studied several classes of virtual age models based on determi-
nistic reduction of effective age due to repairs. In a recent review
article, Tanwar et al. [28] conduct a thorough survey of virtual age
models described in terms of the so-called Generalized Renewal
Process (GRP) introduced in [20].

Imperfect repair models are often the basis for optimal main-
tenance policies. For example, Yevkin and Krivtsov [31] use the
GRP in an optimal preventive maintenance problem. Another
generalization of the renewal process, the quasi-renewal process
or geometric renewal process, is used in an optimal maintenance
problem by Lam [21].

The trend-renewal-process (TRP), described and studied in
Lindqvist, Elvebakk and Heggland [22], is a different kind of
imperfect repair model. The TRP is defined to be a time-trans-
formed renewal process, where the time transformation is given
by a trend function, λ(·), similar to the intensity of a non-homo-
geneous Poisson process (NHPP), and the renewal process is
characterized by the interarrival distribution, F. In some sense the
TRP is constructed as the “least common multiple” of the NHPP
and the RP. Thus the TRP framework can be used to distinguish
between the two “extreme” kinds of repair, minimal and perfect.
In addition, the TRP is able to represent a possible trend in inter-
failure times.

It is this ability to incorporate two very different features of a
repairable system, the type of repair and a possible time trend in
failure occurrences, that makes the TRP a powerful tool, despite its
simple structure.

The present paper is concerned with the fitting of TRP models
to failure data. Until now, this has been mostly done using
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parametric models for the trend function and the underlying
renewal process, see, e.g., Lindqvist et al. [22], Cook and Lawless [9,
Ch. 5.2], Bebbington [5], Jokiel-Rokita and Magiera [17], and Franz,
Jokile-Rokita and Magiera [11], for examples.

However, in many applications there is no clear reason to
choose a concrete parametric model for the conditional intensity
function and in such a case a free-model method and then a data-
driven focus of the problem seems to be the most adequate.

Heggland and Lindqvist [16] considered nonparametric esti-
mation of an assumed monotone trend function λ(·) when F is
parametric, in particular Weibull distributed. Later, Lindqvist [23]
considered the case when λ(·) is a general nonnegative function,
thus extending earlier work on nonparametric estimation in
NHPPs, e.g., Bartozinski et al. [4]. A review of these studies can be
found in the monograph by Gamiz, Kulasekera, Limnios and
Lindqvist [13].

In the present paper we consider a fully nonparametric
approach and estimate the conditional intensity function of the
TRP by using kernel smoothing techniques. We develop an algo-
rithm to estimate the conditional intensity function by preserving
its structure in terms of the trend function and the underlying
renewal process, obtaining a weighted kernel estimator for the
trend function motivated by the approach of Ramlau-Hansen [27],
while proceeding similar to Nielsen and Tanggaard [26] for the
estimation of the hazard of the renewal distribution. Thus in the
following we do not assume any particular functional form for the
distribution function of the underlying RP, F, and the trend func-
tion λ(·).

Although it still seems that parametric models are the first
choice in reliability analyses, there is an increasing activity in the
use of nonparametric methods. For example, Gamiz and Roman
[12]; Xiao and Dohi [30] and Taylor and Pena [29] use nonpara-
metric methods in applications related to repairable systems,
while Gandy and Jensen [15]; Luo et al. [24]; Bobrowski et al. [6];
Zhao et al. [32] use kernel smoothing methods in specific relia-
bility applications.

The present paper is organized as follows. Section 2 states the
basic notation and definitions of the point processes used for
modeling of repairable systems, in particular the TRP. In addition
the section gives a brief presentation of kernel estimation methods
to be used in the algorithm of the paper. The algorithm for non-
parametric estimation in TRPs is presented in Section 3 to be
considered in the rest of the paper. Then in Section 4 it is per-
formed a simulation study. Section 5 presents applications of the
algorithm to three different data sets which have previously
appeared in the literature. It is indicated how our results are in
accordance with results from earlier studies of these data. Some
concluding remarks are finally given in the final section of the
paper.

2. Preliminaries

2.1. Notation

Consider a repairable system, observed from time t¼0. To our
concern, the time-behavior of the system is represented by a
counting process N t tN , 0= { ( ) ≥ }, where N(t) counts the number
of failures of the system observed in t0,( ]. Let Ti be the time of the
ith failure, where we define T 00 = , and let Xi be the time between
failure number i 1− and failure number i, that is X T Ti i i 1= − − . We
assume that all repair times equal 0. This assumption is reasonable
if the repair times are negligible compared to the times between
failures, or if we let the time parameter be the operation time of
the system. For a general treatment of repairable systems, see the
previously cited monographs [2,25].

The counting process N can be completely characterized by its
conditional intensity function which is defined as follows.

2.2. Conditional intensity function

Let t− denote the history of the process up to, but not
including, time t. t− is the sigma-algebra generated by the set
N s s t, 0{ ( ) ≤ < } and hence it contains all the information about
failure times in the past, that is until t, and is called a filtration. The
conditional intensity function is defined as

t
P N t h N t

h
lim

0
. 1h

t

0
γ( ) =

{ ( + ) − ( ) > | }
( )→

−

2.3. Models for repairable systems

In the following we review the definitions of the RP and NHPP,
and then we define the trend renewal process (TRP) which will be
the main model used in this paper and which can be seen as a
generalization of the first two models, see [13].

The process N(t) is a renewal process with interarrival dis-
tribution F, RP(F), if X X, ,1 2 … are independent and identically
distributed with cumulative distribution function (cdf) F, where
we assume that F 0 0( ) = . If F is the exponential distribution with
parameter λ, then RP(F)¼HPP(λ), the homogeneous Poisson pro-
cess with intensity λ. If we denote by z the hazard function cor-
responding to one of the Xi, the conditional intensity function of a
renewal process defined in (1) is given by

t z t T . 2N tγ( ) = ( − ) ( )( )−

Let tλ( ), t 0≥ be a nonnegative function and let the corre-

sponding cumulative function be t s ds
t

0
∫Λ λ( ) = ( ) . The process N(t)

is a nonhomogeneous Poisson process with intensity function tλ( ),
NHPP λ( (·)), if the time-transformed process T T, ,1 2Λ Λ( ) ( ) … is an
HPP (1). In this case, the conditional intensity function defined in
(1) does not depend on the history of the process, and we have
that t tγ λ( ) = ( ).

The trend-renewal process, TRP(F , λ(·)), combines the two defi-
nitions above as follows. Let tλ( ) and tΛ( ) be as for the NHPP, and
let F be a cdf with F 0 0( ) = . Then the process N(t) is a TRP(F , λ(·)) if
the time-transformed process T T, ,1 2Λ Λ( ) ( ) … is an RP(F). The
function F represents the renewal distribution, and λ(·) is called the
trend function of the TRP. It is shown in [22] that in this case, the
conditional intensity function (1) is obtained as

t z t T t , 3N tγ Λ Λ λ( ) = ( ( ) − ( )) ( ) ( )( )−

where, as for the RP, z(·) is the hazard rate function corresponding
to F. The function z will in the following be called the renewal
hazard.

It is easy to see that the TRP generalizes both the NHPP and the
RP, since TRP( e1 ,x λ− (·)− )¼NHPP( λ(·)) and TRP(F,1)¼RP(F).

2.4. Kernel estimation of the intensity function tλ( ) of an NHPP

Suppose first that T T T, , , N1 2 … τ( ) are the observed failure times
of an NHPP observed on the time interval 0, τ[ ]. The standard
kernel estimator of tλ( ) is then given by

⎛
⎝⎜

⎞
⎠⎟t

b
K

t T
b

t
1

, 0.
4i

N
i

1

∑λ̂ ( ) =
−

>
( )

τ

=

( )

Here K denotes a kernel function, usually a symmetric density
function with a compact support, while b is a bandwidth para-
meter conveniently chosen (see, e.g., [13, Chapter 3)].

The kernel estimator (4) may however incur an important bias
when estimating tλ( ) near the boundary t¼0. To alleviate to some
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