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a b s t r a c t

We consider shocks modeling in a ‘natural’ scale which is a discrete scale of natural numbers. A system is
subject to the shock process and its survival probability and other relevant characteristics are studied in
this scale. It turns out that all relations for the probabilities of interest become much easier in the new
scale as compared with the conventional chronological time scale. Furthermore, it does not matter what
type of the point process of shocks is considered. The shock processes with delays and the analog of a
shot-noise process are discussed. Another example of the application of this concept is presented for
systems with finite number of components described by signatures.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Various shock models have been intensively studied in the
literature (see, e.g., [10] and references therein) and applied to
various reliability topics. For instance, Caballé at al. [4], Montoro-
Cazorla et al. [23], Kenzin and Frostig [18], Montoro-Cazorla and
Pérez-Ocón [22], van der Weide and Pandey [28] and Ruiz-Castro
[5] have considered applications to optimal maintenance model-
ing. See also [7,9,16,24,27] for general shock-based reliability
modeling and analysis. In reliability and safety studies and appli-
cations, the most popular model is, probably, the so called, extreme
shock model, where each shock can result in a system's failure with
the specified probability and a system survives it with the com-
plimentary probability. This model can, in principle, account for
damage accumulation as well when the probability of failure
increases with each survived shock [10]. It should be noted that
survival probabilities of systems subject to shock processes for
extreme shock model can be obtained explicitly only for the
Poisson process of shocks. Even for the renewal processes of
shocks, everything becomes more cumbersome and asymptotic or
approximate methods should be used for the corresponding cal-
culations. However, probabilistic reasoning can be substantially
simplified when we change our usual chronological time scale to
the scale defined by the number of shocks occurrences. Of course,

this can be made only for systems that allow for this ‘transfor-
mation’. Thus, in the current paper, instead of a continuous
chronological time scale ½0;1Þ, we will use the discrete one Ν ¼ ½
1;2;…� for ‘times’ to failure of systems.

For illustration of our claim, consider first, a system subject to
the orderly (without multiple occurrences) process of shocks in
chronological time scale. Assume for simplicity that shocks pre-
sent the only cause of its failure. In reliability applications, we are
usually interested in the probability of survival of a system in k.
Denote this probability by k. The simplest model is when an
operating system is subject to the homogeneous Poisson process of
shocks (with the constant rate λ) and survives each shock with
probability q and fails with the complementary probability
p¼ 1�q. In this case, it is well known that the probability of
survival of a system in k is

PðtÞ ¼ expf�pλtg; ð1Þ

whereas for the nonhomogeneous Poisson process (NHPP) with
rate λðtÞ and time dependent pðtÞ; qðtÞ, this formula turns to [1,8]:

PðtÞ ¼ exp �
Z t

0
pðuÞλðuÞdu

� �
: ð2Þ

Obviously, when λðtÞ ¼ λ and pðtÞ ¼ p, (2) turns to (1). Even the
simplest analog of the survival probability (1) for a renewal pro-
cess already cannot be obtained in a similar simple form and,
usually, computational methods, bounds or asymptotic methods
are used for obtaining the corresponding probability PðtÞ [17]. The
exact relation can be obviously formally written in the form of the
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infinite series as

PðtÞ ¼
X1
k ¼ 0

qkðGðkÞðtÞ�Gðkþ1ÞðtÞÞ

¼
X1
k ¼ 1

pqk�1ð1�GðkÞðtÞÞ; ð3Þ

where GðtÞ is the baseline distribution for a renewal process, GðkÞðtÞ
is the k-fold convolution of GðtÞwith itself, Gð1ÞðtÞ � GðtÞ; Gð0ÞðtÞ � 1
and GðkÞðtÞ�Gðkþ1ÞðtÞ is the probability of k renewals in ½0; tÞ. When
p-0 (3) is characterized by the following asymptotic formula
when p-0 [17]

PðtÞ ¼ exp �pt
μ

� �
ð1þoð1ÞÞ; ð4Þ

where we assume that μ¼ R1
0 GðuÞduo1.

Eqs. (1)–(4) are derived in a conventional time scale and define
the corresponding probabilistic characteristics in a chronological
time t. However, there are a lot of settings when we are not
actually interested in survival in real time. It is well known that
reliability indices can be functions not necessarily of time (as
usually) but of other monotone quantities. For instance, the
growing crack in a material can be described by its length s,
whereas a random variable S is the length of a crack at which a
failure occurs. Therefore, the cdf of the time to failure can be
parameterized accordingly as FðsÞ ¼ PðSrsÞ. Similar with auto-
mobiles, where S can represent a random mileage to failure (see,
e.g., [15] and [6] on alternative scales). Similar to the above two
examples with a continuous alternative scale, we can consider the
corresponding number of shocks in a general extreme shock
model as a new alternative discrete scale. Thus, a random variable
NS, which is the number of shocks till the system's failure and its
discrete distribution FðkÞ ¼ PðNSrkÞ will be of interest. See also
the relevant discussion in [26] and [19].

By a shock we understand an external ‘point’ event that can
result in a system's failure. Usually shocks are described by a
random magnitude. However, our description in this paper
employs the probability of failure under a shock that is an aggre-
gated characteristic, which already takes into account the shock’s
magnitude. There are numerous practical examples of shocks
effecting operating systems. In electrical systems, the peaks of
voltage over a threshold can be considered as shocks. Each shock
of this kind can result in a failure of a system, whereas when the
fluctuations of voltage are within normal bounds, they are
‘harmless’. Hackers attack on computer systems or random missile
attacks in warfare can be also considered as shocks, as well as
earthquakes, lightning strikes, etc.

There are two main advantages of our “time-free” approach as
compared with the conventional case of the time scale

a. All relations for the probabilities of interest become much
easier,

b. It does not matter what kind of a shock process is considered:
only the number of shocks is relevant!

The importance of the second claim is obvious and it is hard to
overestimate it. We will illustrate the first statement with the
simplest setting when each shock ‘kills’ a system with probability
p and a system survives with probability q, which describes the
extreme shock model. It is obvious that (1) (or (3)) corresponds
now to the simplest power function

PðkÞ ¼ qk; k¼ 1;2;…; ð5Þ

whereas the discrete distribution of ‘time’ to failure is given by the
following mass and cumulative distribution functions as

f ðkÞ ¼ pqk�1; k¼ 1;2;…; FðkÞ ¼
Xk
1

f ðiÞ ¼ 1�PðkÞ ¼ 1�qk; ð6Þ

respectively. However, as was already emphasized, (5) and (6) do
not depend on the type of arriving shock process, whereas (1) is
true only for the HPP and (2) holds only for the NHPP.

Thus we see that the probabilities of interest in the new scale
are described by the corresponding discrete distributions. Ageing
properties can be also formulated in a simpler way in the new
scale, as only aging properties of the corresponding discrete dis-
tributions matter, whereas, e.g., in (2), the distribution FðtÞ ¼ 1�P
ðtÞ will be, for instance, IFR when λðtÞpðtÞ is increasing (non-
decreasing). Therefore, ageing properties in the latter case
obviously also depend on the rate of the arriving shock process.
Thus, some properties of discrete distributions and, specifically,
the discrete failure rate will play an important role in what follows.
As the discrete failure rate is a controversial (in a way) char-
acteristic, in the next section, we would like to discuss some of its
properties relevant for our further presentation. Note that the new
scale is not a universal one; it should be used in the justified
situations when properties in chronological time are not so rele-
vant. For instance, in a continuous case, for the warranties based
on mileage, it does not matter how long in time this mileage has
been accumulated.

An important example of the alternative discrete scale is when a
piece of equipment operates in cycles and the observation is the
number of cycles completed before the failure. In this case, we can
‘interpret’ one cycle of usage as a shock and, therefore, the probability
of failure under a shock, e.g., in the model (5) and (6), p can be
equivalently ‘interpreted’ as the probability of failure on the corre-
sponding cycle. Thus, our formulation based on shock modeling
considered in this paper can be generally applied to such systems.
Furthermore, this setting describes a rather broad class of technical
systems that are used intermittently [26] and its importance for
reliability practice is hard to overestimate. For the meaningful dis-
cussion of applications of discrete distributions see [3].

This note is organized as follows. In Section 2 we discuss some
properties of the discrete failure rate. In Section 3 some well-
known in the chronological scale shock-based setting are ‘trans-
lated’ to the discrete scale. Section 4 deals with shocks affecting
the operation of a monotone system of ncomponents. Finally,
some remarks are given in Section 5.

2. Preliminaries: discrete failure rate

As we are dealing with discrete distributions, we will briefly
present now some well-known facts on the discrete failure rate in
the manner useful for further presentation and discussion.

We think that there is nothing wrong with the notion of the
discrete failure rate except the term itself, as its meaning is slightly
different from that in the case of continuous random variables,
which sometimes can result in confusion. Moreover, some altera-
tions of the classical definition were suggested to avoid this con-
fusion (see the next section).

For the sake of comparison, denote by Tc the lifetime random
variable with absolutely continuous cdf FðtÞ ¼ PðTcrtÞ and the pdf
f ðtÞ ¼ F 0ðtÞ, the failure rate λðtÞ ¼ f ðtÞ=FðtÞ. When ΔðtÞ is sufficiently
small, obviously

PrðtoTcrtþΔt jTc4tÞ � λðtÞΔt; ð7Þ
whereas λðtÞ does not have the meaning of probability itself. It is well
known that the series system of n independent components with
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