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a b s t r a c t

The note is concerned with a model of linear elastostatics for a two-dimensional
inhomogeneous anisotropic body weakened by a single straight crack. On the crack
faces, nonpenetration conditions/Signorini conditions are imposed. Relying upon a
higher regularity result in Besov spaces for the displacement field in a neighborhood
of the crack tip, we prove that the energy release rate is actually independent of the
choice of a subsequent crack path (among the possible continuations of class H3).

© 2017 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

One of the frequently used approaches for describing quasistatic crack propagation in elastic bodies is
the Griffith energy criterion [1]. If the possible crack path is known a priori, the Griffith energy criterion
can be formulated in terms of the energy release rate, which is the negative of the first right derivative of
the potential deformation energy with respect to the crack length, and the fracture toughness. This note is
inspired by the article of M. Brokate and A. Khludnev [2] in which they investigated the dependence of the
energy release rate on smooth enough crack propagation paths for two-dimensional homogeneous isotropic
linear elastic bodies with traction-free crack faces (pure Neumann conditions) and extends their results to
the case of inhomogeneous anisotropic elastic bodies with cracks subjected to nonpenetration conditions.
More precisely, for the case of a single straight crack, we prove that the energy release rate does not depend
on a subsequent crack path, provided that the crack propagates along a smooth curve having the same
initial tangential vector and curvature as at the crack tip. The key observation which allows us to work with
curved cracks of class H3 instead of H4, see [3], is that in a neighborhood of the crack tip, the displacement
field is B3/2

2,∞ regular [4]. This higher regularity result was applied to the study of computational aspects
of quasistatic crack propagation in [5]. Finally, we mention the paper [6] in which, for the setting of linear
antiplane elastostatics, it was shown that the energy release rate is continuous with respect to the Hausdorff
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Fig. 1. The geometrical setup of the problem.

convergence in a class of admissible crack paths and is actually independent of the choice of the curve that
extends the crack (among the possible continuations of class C1,1) .

We next turn to a precise formulation of our model. Let Ω be a bounded domain in R2 with Lipschitz
boundary corresponding to the reference configuration of an undamaged physical body. The boundary ∂Ω
is a union of two disjoint subsets ΓD and ΓN , with H1(ΓD) > 0, where H1 denotes the one-dimensional
Hausdorff measure. On the Dirichlet part of the boundary ΓD the displacement field is prescribed, and on the
Neumann part ΓN the traction is imposed. The set Σ = [−1, 0] × {0} is an initial crack, while a subsequent
crack path is represented by the graph of a smooth function ψ, i.e. γδ = { (x1, ψ(x1)) | x1 ∈ [0, δ] },
δ ∈ [0, δ∗], with ψ(0) = ψ,1(0) = ψ,11(0) = 0. A subscript following a comma indicates differentiation with
respect to that Cartesian coordinate. The whole crack γδ = Σ ∪ γδ is assumed to be such that γδ ⊂ Ω for
all δ ∈ [0, δ∗], and the set Ωδ = Ω \ γδ is the domain with crack γδ, see Fig. 1. Moreover, we assume that
the domain Ω is split into two subdomains Ω1 and Ω2 with Lipschitz boundaries such that γδ∗ ⊂ ∂Ω1 ∩ ∂Ω2

and H1(∂Ωi ∩ ΓD) > 0, i = 1, 2. This guarantees that the first Korn inequality is valid in the non-Lipschitz
domains Ωδ for all δ ∈ [0, δ∗].

To formulate the model in a variational setting, we introduce the convex closed cone of kinematically
admissible displacements K(Ωδ) = { v ∈ H1(Ωδ)2 | [vi]νi ≥ 0 on γδ, v = 0 on ΓD }, where [v] = v+ − v− is
the jump of a function v across the crack γδ, with the signs ± corresponding to the positive and negative
directions of the unit normal vector ν on γδ. A repeated subscript is to be summed over the values 1, 2.
Neglecting body forces, the potential deformation energy of the system is given by the functional

Eψ(v; δ) = 1
2

∫
Ωδ

aijklεkl(v)εij(v) dx−
∫
ΓN

fivi dH1.

Here, f = (f1, f2) ∈ L2(ΓN )2 is the traction acting on ΓN and ε = {εij(v)} is the infinitesimal strain tensor,
2εij(v) = vi,j + vj,i, i, j = 1, 2. The fourth order tensor A = {aijkl} is the elastic modulus tensor satisfying
the usual properties of symmetry and positive definiteness and the regularity condition aijkl ∈ C1(Ω),
i, j, k, l = 1, 2. Then the minimization problem for determining the displacement field uδ corresponding to
the domain Ωδ reads as follows:

Find uδ ∈ K(Ωδ) such that Eψ(uδ; δ) ≤ Eψ(v; δ) for all v ∈ K(Ωδ). (1)

The coercivity, weakly lower semicontinuity, and strong convexity of Eψ ensure that there exists a unique
solution of (1) satisfying the variational inequality

uδ ∈ K(Ωδ),
∫
Ωδ

aijklεkl(uδ)εij(v − uδ) dx ≥
∫
ΓN

fi(vi − uδi ) dH1 for all v ∈ K(Ωδ). (2)
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